Volume 42 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Rui, WANG Zixuan, KONG Lingzheng, HOU Xianlei. Segmentation of Overtaking Trajectories for Non-motor Vehicles Based on Information Entropy[J]. Journal of Transport Information and Safety, 2024, 42(2): 115-123. doi: 10.3963/j.jssn.1674-4861.2024.02.012
Citation: ZHANG Rui, WANG Zixuan, KONG Lingzheng, HOU Xianlei. Segmentation of Overtaking Trajectories for Non-motor Vehicles Based on Information Entropy[J]. Journal of Transport Information and Safety, 2024, 42(2): 115-123. doi: 10.3963/j.jssn.1674-4861.2024.02.012

Segmentation of Overtaking Trajectories for Non-motor Vehicles Based on Information Entropy

doi: 10.3963/j.jssn.1674-4861.2024.02.012
  • Received Date: 2023-04-21
    Available Online: 2024-09-14
  • Identifying overtaking behavior through bicycle trajectories is essential in evaluating the service level of non-motor vehicle transportation. Threshold-based segmentation methods require setting different thresholds for various trajectories, this paper introduces information entropy theory to segment overtaking trajectories of non-motorized vehicle. Using video data, 780 non-motor vehicle overtaking trajectories are extracted, and 11 potential overtaking scenarios are covered. By analyzing the characteristic parameters of each stage of the overtaking process, lateral acceleration, lateral offset distance, and offset angle are identified as the characteristic parameters based on information entropy segmentation. A method for segmenting overtaking trajectory of non-motor vehicles is developed using information entropy theory, and the segmentation judgment criteria is proposed based on this theory. According to the information entropy theory, the law of entropy increase indicates that the probability density of characteristic parameters in two sub-trajectories after segmentation is closer than before segmentation. Besides, considering the features of characteristic parameters of non-motorized vehicle overtaking trajectories, the information entropy segmen-tation standard is proposed for non-motorized vehicle overtaking trajectories. Taking the real trajectory data as experimental samples, trajectory segmentation is carried out using the information entropy segmentation method, and baseline methods with time and speed threshold, respectively. K-nearest neighbor (KNN) classification is adopted for recognizing overtaking trajectories based on the results of trajectory segmentation. Moreover, the trajectory coverage index is used to evaluate the effectiveness of different segmentation methods. The experimental results show that the information entropy based segmentation method has an average coverage of 83.0% for overtaking trajectories, compared to a coverage of 79.7% for the threshold based segmentation method. The information entropy based trajectory segmentation method outperforms the threshold based trajectory segmentation method. Furthermore, the average coverage of lateral acceleration of information entropy based segmentation method is 85.1%, achieving the best performance among the information entropy segmentation methods with different features.

     

  • loading
  • [1]
    RAHMANOV M, SHISHKIN A, KOMKOV V, et al. Simulation of pedestrian dynamics based withemantic trajectory segmentation[C]. E3S Web of Conferences, Online: INTERAGROMASH 2022
    [2]
    HIGGS B, ABBAS M. Segmentation and clustering of car-following behavior : recognition of driving patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 81-90. doi: 10.1109/TITS.2014.2326082
    [3]
    郭炜强. 面向轨迹大数据的轨迹分段方法研究及系统实现[D]. 北京: 北方工业大学, 2021.

    GUO W Q. Research and implementation of trajectory segmentation method for trajectory big data[D]. Beijing: North China University of Technology, 2021. (in Chinese)
    [4]
    邬婷. 基于分段和分组滤波的细节保留轨迹总结方法[D]. 天津: 天津大学, 2019.

    WU T. Detail-Preserving trajectory summarization based on segmentation and group-based filtering[D]. Tianjin: Tianjin university, 2019. (in Chinese)
    [5]
    KUMAR P, PERROLLAZ M, LEFEVRE S, et al. Learning-based approach for online lane change intention prediction[C]. IEEE Intelligent Vehicles Symposium, Gold Coast City, Australia: IEEE, 2013.
    [6]
    徐文洁, 赵欣, 酆磊, 等. 基于高精度轨迹数据的车辆换道行为识别研究[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(2): 239-244, 250. doi: 10.3963/j.issn.2095-3844.2023.02.008

    XU W J, ZHAO X, LI F, et al. Research on vehicle lane changing behavior recognition based on high precision trajectory data[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2023, 47(2): 239-244, 250. (in Chinese) doi: 10.3963/j.issn.2095-3844.2023.02.008
    [7]
    LEE J G, HAN J, WHANG K Y. Trajectory clustering: a partition-and-group framework[C]. Acm Sigmod International Conference on Management of Data, New York, USA: Association for Computing Machinery, 2019.
    [8]
    YUAN G, XIA S, ZHANG L, et al. An efficient trajectory-clustering algorithm based on an index tree[J]. Transactions of the Institute of Measurement and Control. 2012, 34(7): 850-861. doi: 10.1177/0142331211423284
    [9]
    宋鑫, 朱宗良, 高银萍, 等. 动态阈值结合全局优化的船舶AIS轨迹在线压缩算法[J]. 计算机科学, 2019, 46(7): 333-338.

    SONG X, ZHU Z L, GAO Y P, et al. Online compression algorithm of ship AIS trajectory based on dynamic threshold combined with global optimization[J]. Computer Science, 2019, 46(7): 333-338. (in Chinese)
    [10]
    何爱林, 周德超, 陈萍, 等. 基于轨迹聚类的运动趋势分析[J]. 海军工程大学学报, 2017, 29(5): 103-107.

    HE A L, ZHOU D C, CHEN P, et al. Cluster-based trajectory overall trend extraction[J]. Journal of Naval University of Engineering, 2017, 29(5): 103-107. (in Chinese)
    [11]
    金佳龙, 周伟, 姜佰辰. 基于行为模式的海上目标轨迹分段算法[J]. 信号处理, 2020, 36(12): 2074-2084.

    JIN J L, ZHOU W, JIANG B C. Trajectory segmentation algorithm based on behavior pattern[J]. Journal of Signal Processing, 2020, 36(12): 2074-2084. (in Chinese)
    [12]
    ZHU F X, MIAO L M, LIU W. Research on vessel trajectory multi-dimensional compression algorithm based on Douglas-Peucker theory[J]. Applied Mechanics and Materials, 2014, 694: 59-62. doi: 10.4028/www.scientific.net/AMM.694.59
    [13]
    YANG X, TANG L. Crowdsourcing big trace data filtering: a partition-and-filter model[C]. XXⅢ ISPRS Congress Prague, Czech Republic: The International Society of Photogrammetry and Remote Sensing, 2016
    [14]
    王知昊, 元海文, 李维娜, 等. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011

    WANG Z H, YUAN H W, LI W N, et al. Vessel trajectory prediction and navigational intent recognition in confluence waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.011
    [15]
    杨家轩, 马令琪. 基于信息熵的船舶轨迹自适应分段压缩算法[J]. 上海海事大学学报, 2022, 43(2): 7-13, 73.

    YANG J X, MA L Q. An adaptive segmentation and compression algorithm of ship trajectory based on entropy of information[J]. Journal of Shanghai Maritime University, 2022, 43(2): 7-13, 73. (in Chinese)
    [16]
    李志斌, 王炜, 赵德, 等. 机非物理分隔道路上自行车超车事件模型[J]. 东南大学学报(自然科学版), 2012, 42(1): 156-161.

    LI Z B, WANG W, ZHAO D, et al. Modeling bicycle passing events on physically separated roadways[J]. Journal of Southeast University (Natural Science Edition), 2012, 42 (1): 156-161. (in Chinese)
    [17]
    柴攀. 城市自行车出行者环境感知与行为研究[D]. 西安: 西安建筑科技大学, 2016.

    CHAI P. Research on environmental perception and behavior of urban bicycle travelers[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. (in Chinese)
    [18]
    陶思然. 基于自行车与电动自行车的二元混合交通流特性研究[D]. 西安: 长安大学, 2015.

    TAO S R. Binary mixed traffic characteristics based on bicycle and electric bicycle[D]. Xi'an: Chang'an Univrsity, 2015. (in Chinese)
    [19]
    王雨楠. 基于轨迹数据的用户行为分析方法研究[D]. 沈阳: 沈阳理工大学, 2020.

    WANG Y N. Research on user behavior analysis method based on trajectory data[D]. Shenyang: Shenyang University of Science and Technology, 2020. (in Chinese)
    [20]
    后旗旸. 基于骑行实验的自行车微观行为研究[D]. 北京: 北京交通大学, 2019.

    HOU Q Y. Study on micro-behavior of cyclist under experiment condition[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [21]
    温惠英, 张伟罡, 赵胜. 基于生成对抗网络的车辆换道轨迹预测模型[J]. 华南理工大学学报(自然科学版), 2020, 48(5): 32-40.

    WEN H Y, ZHANG W G, ZHAO S. Vehicle lane-change trajectory prediction model based on generative adversarial networks[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(5): 32-40. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (114) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return