Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
ZHANG Xiran, LI Zhengzhong, ZHANG Xin, CHEN Shaokuan. Status and Prospects of Studies on Urban Rail Transit Resilience[J]. Journal of Transport Information and Safety, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001
Citation: ZHANG Xiran, LI Zhengzhong, ZHANG Xin, CHEN Shaokuan. Status and Prospects of Studies on Urban Rail Transit Resilience[J]. Journal of Transport Information and Safety, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001

Status and Prospects of Studies on Urban Rail Transit Resilience

doi: 10.3963/j.jssn.1674-4861.2024.04.001
  • Received Date: 2024-02-19
    Available Online: 2024-11-25
  • An urban rail transportation system with high-level resilience is able to effectively respond to emergencies caused by natural disasters, human error, equipment failure, and other factors. In order to fully grasp the research trends related to the resilience of urban rail transit, the keywords and hotspots are analyzed with bibliometric analysis. Early studies focuses on the resilience of track structure, while transportation service resilience has gradually gained attention in recent years. Based on the development process of resilience concept in the fields of physics, ecology, and urban management, the connotation of urban rail transit resilience is explained. Oriented to typical social events and natural disaster scenarios, the scope of resilience evaluation is extended from stations to lines and then to networks. However, under current technological conditions, there is a trade-off relationship between the scale and granularity of resilience evaluation. The linkage mechanisms between macro/micro and dynamic/static objects are not fully explored. In terms of resilience evaluation indicators, the indicators system based on topology, transportation capacity, comprehensive performance and operation flow are summarized. The existing indicator system is able to be further enriched in terms of spatial layout, engineering conditions, facilities, equipment, staffing, management and social forces. Four typical indicator measurement methods are sorted out, which include performance curve based on resilience modeling, big data analysis, simulation and numerical analysis. The measurement results based on a single method are easily affected by factors such as the amount of data, hypothetical conditions, and indicator weights. Multiple methods should be comprehensively used to measure indicators in different types and evaluation stages. Resilience enhancement strategies for pre-prevention, in-process adaptation and post-disaster recovery are also discussed. Most existing research primarily approaches from a perspective of operational management, and related studies on post-disaster recovery of infrastructure are still in an initial exploratory stage. Future research on urban rail transit resilience is expected from four aspects: ①Improving the authenticity of emergency scenarios modeling. ②Dynamic fine-grained analysis integrating spatial and functional division of the city. ③Exploring the propagation mechanism of emergencies to characterize system internal changes. ④Verifying effectiveness of resilience evaluation and improvement methods.

     

  • loading
  • [1]
    中国城市轨道协会. 城市轨道交通2016-2023年度统计和分析报告[EB/OL]. (2024-03-29)[2024-10-09]. https://www.camet.org.cn/tjxx.

    ChinaAssociationofMetros. Statisticalandanalysisreportonurbanrailtransitfrom2016to2023[EB/OL]. (2024-03-29)[2024-10-09]. https://www.camet.org.cn/tjxx. (in Chinese)
    [2]
    FOLKE C. Resilience: the emergence of a perspective for social-ecological systems analyses[J]. Global Environmental Change, 2006, 16(3): 253-267. doi: 10.1016/j.gloenvcha.2006.04.002
    [3]
    廖英泽, 王国盛, 李喆, 等. 城市地下基础设施韧性发展现状及策略[J]. 防灾减灾工程学报, 2022, 42(6): 1183-1190.

    LIAO Y Z, WANG G S, LI Z, et al. Development status and strategy of urban underground infrastructure resilience[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(6): 1183-1190. (in Chinese)
    [4]
    MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]. 2006 Winter Simulation Conference, California, U. S. A: INFORMS-SIM, 2006.
    [5]
    AZOLIN L G, SILVA A N R D, PINTO N. Incorporating public transport in a methodology for assessing resilience in urban mobility[J]. Transportation Research Part D: Transport and Environment, 2020, 85: 102386. doi: 10.1016/j.trd.2020.102386
    [6]
    YIN J, REN X, LIU R, et al. Quantitative analysis for resilience-based urban rail systems: a hybrid knowledge-based and data-driven approach[J]. Reliability Engineering & System Safety, 2022, 219: 108183.
    [7]
    陈群, 黄骞, 陈哲, 等. 基于贝叶斯网络的地铁工程系统韧性评价[J]. 中国安全科学学报, 2018, 28(11): 98-103.

    CHEN Q, HUANG Q, CHEN Z, et al. Quantitative evaluation of resilience of metro engineering system based on Bayesian networks[J]. China Safety Science Journal, 2018, 28(11): 98-103. (in Chinese)
    [8]
    KAMESHWAR S, COX D T, BARBOSA A R, et al. Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network[J]. Reliability Engineering & System Safety, 2019, 191: 106568.
    [9]
    BRUNEAU M, CHANG S, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752. doi: 10.1193/1.1623497
    [10]
    WAN C, YANG Z, ZHANG D, et al. Resilience in transportation systems: a systematic review and future directions[J]. Transport Reviews, 2018, 38(4): 479-498. doi: 10.1080/01441647.2017.1383532
    [11]
    郭庆军, 郝倩雯, 王艺洁, 等. 基于ANP-可拓云模型的地铁系统韧性评价[J]. 系统仿真学报, 2021, 33(4): 943-950.

    GUO Q J, HAO Q W, WANG Y J, et al. Subway system resilience evaluation in based on ANP-extension cloud model[J]. Journal of System Simulation, 2021, 33(4): 943-950. (in Chinese)
    [12]
    PUMPUNI-LENSS G, BLACKBURN T, GARSTENAUER A. Resilience in complex systems: an agent-based approach[J]. Systems Engineering, 2017, 20(2): 158-172. doi: 10.1002/sys.21387
    [13]
    CHANG J, JUNG D, JUN S, et al. Resilience conceptual framework for assessing the performance of transit service[J]. International Journal of Urban Sciences, 2020, 24(3): 339-353. doi: 10.1080/12265934.2019.1687319
    [14]
    陈锦渠, 张帆, 彭其渊, 等. 大客流下城市轨道交通车站韧性评估及划分[J]. 安全与环境学报, 2022, 22(6): 2994-3002.

    CHEN J Q, ZHANG F, PENG Q Y, et al. Resilience assessment and partition of an urban rail transit station under large passenger flow[J]. Journal of Safety and Environment, 2022, 22(6): 2994-3002. (in Chinese)
    [15]
    焦柳丹, 李东荣, 张羽, 等. 暴雨灾害下城市轨道交通车站韧性关键影响因素研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(5): 109-115. doi: 10.3969/j.issn.1674-0696.2023.05.14

    JIAO L D, LI D R, ZHANG Y, et al. Key influencing factors of urban rail transit station resilience under rainstorm disaster[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(5): 109-115. (in Chinese) doi: 10.3969/j.issn.1674-0696.2023.05.14
    [16]
    李东荣. 暴雨灾害下城市轨道交通线路韧性评估研究[D]. 重庆: 重庆交通大学, 2022.

    LI D R. Research on resilience evaluation of urban rail transit line under rainstorm disaster[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese)
    [17]
    宁尧, 魏运, 豆飞, 等. 基于渗流的城市轨道交通系统线路韧性评估[C]. 第十七届中国智能交通年会. 成都: 中国智能交通协会, 2022.

    NING Y, WEI Y, DOU F, et al. Resilience assessment of urban rail transit lines based on percolation[C]. 17th Annual Conference of ITS China, Chengdu, China: ITS China, 2022. (in Chinese)
    [18]
    LU Q C. Modeling network resilience of rail transit under operational incidents[J]. Transportation Research Part A: Policy and Practice, 2018, 117: 227-237. doi: 10.1016/j.tra.2018.08.015
    [19]
    马飞, 赵成勇, 孙启鹏, 等. 重大公共卫生灾害主动限流背景下城市轨道交通网络集成韧性[J]. 交通运输工程学报, 2023, 23(1): 208-221.

    MA F, ZHAO C Y, SUN Q P, et al. Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 208-221. (in Chinese)
    [20]
    霍小森, 舒鑫宇, 焦柳丹. 突发公共卫生事件下城市轨道交通系统适灾韧性评估[J]. 都市快轨交通, 2023, 36(5): 152-158. doi: 10.3969/j.issn.1672-6073.2023.05.022

    HUO X S, SHU X Y, JIAO L D. Disaster resilience assessment of urban rail transit systems under public health emergencies[J]. Urban Rapid Rail Transit, 2023, 36(5): 152-158. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.05.022
    [21]
    黄亚江, 康飞, 易杰, 等. 基于ISM-ANP-Fuzzy算法的地铁车站火灾安全韧性评价体系[J]. 城市轨道交通研究, 2023, 26(11): 31-35.

    HUANG Y J, KANG F, YI J, et al. Evaluation system for fire safety resilience of subway stations based on ISM-ANP-Fuzzy algorithm[J]. Urban Mass Transit, 2023, 26 (11): 31-35. (in Chinese)
    [22]
    GUO K, ZHANG L. Adaptive multi-objective optimization for emergency evacuation at metro stations[J]. Reliability Engineering and System Safety, 2022, 219: 108210. doi: 10.1016/j.ress.2021.108210
    [23]
    何郑, 杨宇轩, 颜红艳, 等. 暴雨内涝灾害下地铁项目施工韧性评估与实证研究[J]. 铁道科学与工程学报, 2023, 20(12): 4781-4790.

    HE Z, YANG Y X, YAN H Y, et al. Assessment and empirical research for construction resilience of railway projects under waterlogging disasters[J]. Journal of Railway Science and Engineering, 2023, 20(12): 4781-4790. (in Chinese)
    [24]
    LI Y, HE Q, SHEN J. Risk assessment on the effect of weather factors on civil engineering facilities in a metro system[C]. 5th International Conference on Transportation Engineering, Dalian, China: Southwest Jiaotong University, 2015.
    [25]
    LYU H M, SHEN S, ZHOU A, et al. Perspectives for flood risk assessment and management for mega-city metro system[J]. Tunnelling and Underground Space Technology, 2019, 84: 31-44. doi: 10.1016/j.tust.2018.10.019
    [26]
    WANG G, LIU Y, HU Z, et al. Flood risk assessment of subway systems in metropolitan areas under land subsidence scenario: a case study of Beijing[J]. Remote Sensing, 2021, 13(4): 637. doi: 10.3390/rs13040637
    [27]
    WU H, WANG J, LIU S, et al. Research on decision-making of emergency plan for waterlogging disaster in subway station project based on linguistic intuitionistic fuzzy set and TOPSIS[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4825-4851. doi: 10.3934/mbe.2020263
    [28]
    黄莺, 刘梦茹, 魏晋果, 等. 基于韧性曲线的城市地铁网络恢复策略研究[J]. 灾害学, 2021, 36(1): 32-36. doi: 10.3969/j.issn.1000-811X.2021.01.007

    HUANG Y, LIU M R, WEI J G, et al. Research on urban metro network recovery strategy based on resilience curve[J]. Journal of Catastrophology, 2021, 36(1): 32-36. (in Chinese) doi: 10.3969/j.issn.1000-811X.2021.01.007
    [29]
    MARTELLO M V, WHITTLE A J, KEENAN J M, et al. Evaluation of climate change resilience for Boston's rail rapid transit network[J]. Transportation Research Part D: Transport and Environment, 2021, 97: 102908. doi: 10.1016/j.trd.2021.102908
    [30]
    D'LIMA M, MEDDA F. A new measure of resilience: an application to the London underground[J]. Transportation Research Part A: Policy and Practice, 2015, 81: 35-46. doi: 10.1016/j.tra.2015.05.017
    [31]
    JIN J G, TANG L C, SUN L, et al. Enhancing metro network resilience via localized integration with bus services[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 63: 17-30. doi: 10.1016/j.tre.2014.01.002
    [32]
    陶婵娟. 考虑应急资源配置的地铁网络韧性评估与优化[D]. 武汉: 华中科技大学, 2020.

    TAO C J. A resilience evaluation and optimization framework for metro networks considering emergency resource allocation[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
    [33]
    吕彪, 管心怡, 高自强. 地铁网络服务韧性评估与最优恢复策略[J]. 交通运输系统工程与信息, 2021, 21(5): 198-205.

    LYU B, GUAN X Y, GAO Z Q. Evaluation and optimal recovery strategy of metro network service resilience[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 198-205. (in Chinese)
    [34]
    祝连波, 王世笛, 林陵娜, 等. 基于博弈论组合赋权-物元可拓模型的地铁车站抗涝韧性评估研究[J]. 灾害学, 2023, 38(3): 1-6. doi: 10.3969/j.issn.1000-811X.2023.03.001

    ZHU L B, WANG S D, LIN L N, et al. Based on the combination of game theory and weighted matter-element extension model study on waterlogging resilience assessment of metro stations[J]. Journal of Catastrophology, 2023, 38(3): 1-6. (in Chinese) doi: 10.3969/j.issn.1000-811X.2023.03.001
    [35]
    REED D A, KAPUR K C, CHRISTIE R D. Methodology for assessing the resilience of networked infrastructure[J]. IEEE Systems Journal, 2009, 3(2): 174-180. doi: 10.1109/JSYST.2009.2017396
    [36]
    YODO N, WANG P, ZHOU Z. Predictive resilience analysis of complex systems using dynamic Bayesian networks[J]. IEEE Transactions on Reliability, 2017, 66(3): 761-770. doi: 10.1109/TR.2017.2722471
    [37]
    HENRY D, RAMIREZ-MARQUEZ J E. Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering & System Safety, 2012, 99: 114-122.
    [38]
    ZHU Y, OZBAY K, XIE K, et al. Using big data to study resilience of taxi and subway trips for hurricanes Sandy and Irene[J]. Transportation Research Record, 2016, 2599(1): 70-80. doi: 10.3141/2599-09and Buildings||236||110795|2021|||
    [39]
    周聪. 基于仿真的城市轨道交通换乘站韧性评价与优化[D]. 北京: 北京交通大学, 2022.

    ZHOU C. Resilient evaluation and optimization of urban rail transit transfer station based on simulation[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [40]
    霍巧芬. 基于可拓云模型的地铁项目运营安全系统韧性评价研究[D]. 合肥: 安徽建筑大学, 2022.

    HUO Q F. Resilience evaluation of metro project operation safety system based on extension cloud model[D]. Hefei: Anhui Jianzhu University, 2022. (in Chinese)
    [41]
    TANG Y, HUANG S. Assessing seismic vulnerability of urban road networks by a Bayesian network approach[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 390-402. doi: 10.1016/j.trd.2019.02.003
    [42]
    GOLDBECK N, ANGELOUDIS P, OCHIENG W Y. Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models[J]. Reliability Engineering & System Safety, 2019, 188: 62-79.
    [43]
    张翕然, 陈绍宽, 汪波, 等. 考虑替代救援可靠度的应急配置优化模型[J]. 浙江大学学报(工学版), 2021, 55(1): 20-30.

    ZHANG X R, CHEN S K, WANG B, et al. Emergency allocation optimization model considering reliability of replaceable rescue[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(1): 20-30. (in Chinese)
    [44]
    HUANG Y, MANNINO C, YANG L, et al. Coupling time-indexed and big-M formulations for real-time train scheduling during metro service disruptions[J]. Transportation Research Part B: Methodological, 2020, 133: 38-61. doi: 10.1016/j.trb.2019.12.005
    [45]
    WANG Y, ZHAO K, D'ARIANO A, et al. Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions[J]. Transportation Research Part B: Methodological, 2021, 152: 87-117. doi: 10.1016/j.trb.2021.08.003
    [46]
    ZHU Y, GOVERDE R M P. Railway timetable rescheduling with flexible stopping and flexible shortturning during disruptions[J]. Transportation Research Part B: Methodological, 2019, 123: 149-181. doi: 10.1016/j.trb.2019.02.015
    [47]
    LI S, ZHOU X, YANG L, et al. Automatic train regulation of complex metro networks with transfer coordination constraints: a distributed optimal control framework[J]. Transportation Research Part B: Methodological, 2018, 117: 228-253. doi: 10.1016/j.trb.2018.09.001
    [48]
    崔欣, 路庆昌, 徐标, 等. 考虑公交接驳的地铁网络韧性评估及故障修复策略[J]. 都市快轨交通, 2023, 36(1): 93-98. doi: 10.3969/j.issn.1672-6073.2023.01.014

    CUI X, LU Q C, XU B, et al. Resilience evaluation and failure recovery strategy of metro network considering bus connection scenario[J]. Urban Rapid Rail Transit, 2023, 36(1): 93-98. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.01.014
    [49]
    程静, 卢群, 吴同政, 等. 地铁网络级联失效恢复策略韧性评估方法[J]. 交通信息与安全, 2023, 41(4): 173-184. doi: 10.3963/j.jssn.1674-4861.2023.04.018

    CHENG J, LU Q, WU T Z, et al. A method for evaluating recovery strategies for cascade failures of metro networks[J]. Journal of Transport Information and Safety, 2023, 41(4): 173-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.018
    [50]
    刘梦茹. 韧性视角下城市地铁网络最优恢复策略研究[D]. 西安: 西安建筑科技大学, 2021.

    LIU M R. Study on optimal recovery strategy of urban subway network from the perspective of resilience[D]. Xi'an: Xi'an University of Architecture and Technology, 2021. (in Chinese)
    [51]
    潘守政, 何佳, 王英平, 等. 环线对地铁网络弹性的影响研究[J]. 交通运输工程与信息学报, 2022, 20(4): 100-110.

    PAN S Z, HE J, WANG Y P, et al. Influence of circle lines on the resilience of subway networks[J]. Journal of Transportation Engineering and Information, 2022, 20(4): 100-110. (in Chinese)
    [52]
    马敏, 胡大伟, 舒兰, 等. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.

    MA M, HU D W, SHU L, et al. Resilience assessment and recovery strategy on urban rail transit network[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 396-404. (in Chinese)
    [53]
    ZHANG H, LI S, WANG Y, et al. Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: a lagrangian relaxation-based decomposition algorithm[J]. Omega, 2021, 102: 102371. doi: 10.1016/j.omega.2020.102371
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (835) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return