Citation: | ZHANG Xiran, LI Zhengzhong, ZHANG Xin, CHEN Shaokuan. Status and Prospects of Studies on Urban Rail Transit Resilience[J]. Journal of Transport Information and Safety, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001 |
[1] |
中国城市轨道协会. 城市轨道交通2016-2023年度统计和分析报告[EB/OL]. (2024-03-29)[2024-10-09].
ChinaAssociationofMetros. Statisticalandanalysisreportonurbanrailtransitfrom2016to2023[EB/OL]. (2024-03-29)[2024-10-09].
|
[2] |
FOLKE C. Resilience: the emergence of a perspective for social-ecological systems analyses[J]. Global Environmental Change, 2006, 16(3): 253-267. doi: 10.1016/j.gloenvcha.2006.04.002
|
[3] |
廖英泽, 王国盛, 李喆, 等. 城市地下基础设施韧性发展现状及策略[J]. 防灾减灾工程学报, 2022, 42(6): 1183-1190.
LIAO Y Z, WANG G S, LI Z, et al. Development status and strategy of urban underground infrastructure resilience[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(6): 1183-1190. (in Chinese)
|
[4] |
MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]. 2006 Winter Simulation Conference, California, U. S. A: INFORMS-SIM, 2006.
|
[5] |
AZOLIN L G, SILVA A N R D, PINTO N. Incorporating public transport in a methodology for assessing resilience in urban mobility[J]. Transportation Research Part D: Transport and Environment, 2020, 85: 102386. doi: 10.1016/j.trd.2020.102386
|
[6] |
YIN J, REN X, LIU R, et al. Quantitative analysis for resilience-based urban rail systems: a hybrid knowledge-based and data-driven approach[J]. Reliability Engineering & System Safety, 2022, 219: 108183.
|
[7] |
陈群, 黄骞, 陈哲, 等. 基于贝叶斯网络的地铁工程系统韧性评价[J]. 中国安全科学学报, 2018, 28(11): 98-103.
CHEN Q, HUANG Q, CHEN Z, et al. Quantitative evaluation of resilience of metro engineering system based on Bayesian networks[J]. China Safety Science Journal, 2018, 28(11): 98-103. (in Chinese)
|
[8] |
KAMESHWAR S, COX D T, BARBOSA A R, et al. Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network[J]. Reliability Engineering & System Safety, 2019, 191: 106568.
|
[9] |
BRUNEAU M, CHANG S, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752. doi: 10.1193/1.1623497
|
[10] |
WAN C, YANG Z, ZHANG D, et al. Resilience in transportation systems: a systematic review and future directions[J]. Transport Reviews, 2018, 38(4): 479-498. doi: 10.1080/01441647.2017.1383532
|
[11] |
郭庆军, 郝倩雯, 王艺洁, 等. 基于ANP-可拓云模型的地铁系统韧性评价[J]. 系统仿真学报, 2021, 33(4): 943-950.
GUO Q J, HAO Q W, WANG Y J, et al. Subway system resilience evaluation in based on ANP-extension cloud model[J]. Journal of System Simulation, 2021, 33(4): 943-950. (in Chinese)
|
[12] |
PUMPUNI-LENSS G, BLACKBURN T, GARSTENAUER A. Resilience in complex systems: an agent-based approach[J]. Systems Engineering, 2017, 20(2): 158-172. doi: 10.1002/sys.21387
|
[13] |
CHANG J, JUNG D, JUN S, et al. Resilience conceptual framework for assessing the performance of transit service[J]. International Journal of Urban Sciences, 2020, 24(3): 339-353. doi: 10.1080/12265934.2019.1687319
|
[14] |
陈锦渠, 张帆, 彭其渊, 等. 大客流下城市轨道交通车站韧性评估及划分[J]. 安全与环境学报, 2022, 22(6): 2994-3002.
CHEN J Q, ZHANG F, PENG Q Y, et al. Resilience assessment and partition of an urban rail transit station under large passenger flow[J]. Journal of Safety and Environment, 2022, 22(6): 2994-3002. (in Chinese)
|
[15] |
焦柳丹, 李东荣, 张羽, 等. 暴雨灾害下城市轨道交通车站韧性关键影响因素研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(5): 109-115. doi: 10.3969/j.issn.1674-0696.2023.05.14
JIAO L D, LI D R, ZHANG Y, et al. Key influencing factors of urban rail transit station resilience under rainstorm disaster[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(5): 109-115. (in Chinese) doi: 10.3969/j.issn.1674-0696.2023.05.14
|
[16] |
李东荣. 暴雨灾害下城市轨道交通线路韧性评估研究[D]. 重庆: 重庆交通大学, 2022.
LI D R. Research on resilience evaluation of urban rail transit line under rainstorm disaster[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese)
|
[17] |
宁尧, 魏运, 豆飞, 等. 基于渗流的城市轨道交通系统线路韧性评估[C]. 第十七届中国智能交通年会. 成都: 中国智能交通协会, 2022.
NING Y, WEI Y, DOU F, et al. Resilience assessment of urban rail transit lines based on percolation[C]. 17th Annual Conference of ITS China, Chengdu, China: ITS China, 2022. (in Chinese)
|
[18] |
LU Q C. Modeling network resilience of rail transit under operational incidents[J]. Transportation Research Part A: Policy and Practice, 2018, 117: 227-237. doi: 10.1016/j.tra.2018.08.015
|
[19] |
马飞, 赵成勇, 孙启鹏, 等. 重大公共卫生灾害主动限流背景下城市轨道交通网络集成韧性[J]. 交通运输工程学报, 2023, 23(1): 208-221.
MA F, ZHAO C Y, SUN Q P, et al. Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 208-221. (in Chinese)
|
[20] |
霍小森, 舒鑫宇, 焦柳丹. 突发公共卫生事件下城市轨道交通系统适灾韧性评估[J]. 都市快轨交通, 2023, 36(5): 152-158. doi: 10.3969/j.issn.1672-6073.2023.05.022
HUO X S, SHU X Y, JIAO L D. Disaster resilience assessment of urban rail transit systems under public health emergencies[J]. Urban Rapid Rail Transit, 2023, 36(5): 152-158. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.05.022
|
[21] |
黄亚江, 康飞, 易杰, 等. 基于ISM-ANP-Fuzzy算法的地铁车站火灾安全韧性评价体系[J]. 城市轨道交通研究, 2023, 26(11): 31-35.
HUANG Y J, KANG F, YI J, et al. Evaluation system for fire safety resilience of subway stations based on ISM-ANP-Fuzzy algorithm[J]. Urban Mass Transit, 2023, 26 (11): 31-35. (in Chinese)
|
[22] |
GUO K, ZHANG L. Adaptive multi-objective optimization for emergency evacuation at metro stations[J]. Reliability Engineering and System Safety, 2022, 219: 108210. doi: 10.1016/j.ress.2021.108210
|
[23] |
何郑, 杨宇轩, 颜红艳, 等. 暴雨内涝灾害下地铁项目施工韧性评估与实证研究[J]. 铁道科学与工程学报, 2023, 20(12): 4781-4790.
HE Z, YANG Y X, YAN H Y, et al. Assessment and empirical research for construction resilience of railway projects under waterlogging disasters[J]. Journal of Railway Science and Engineering, 2023, 20(12): 4781-4790. (in Chinese)
|
[24] |
LI Y, HE Q, SHEN J. Risk assessment on the effect of weather factors on civil engineering facilities in a metro system[C]. 5th International Conference on Transportation Engineering, Dalian, China: Southwest Jiaotong University, 2015.
|
[25] |
LYU H M, SHEN S, ZHOU A, et al. Perspectives for flood risk assessment and management for mega-city metro system[J]. Tunnelling and Underground Space Technology, 2019, 84: 31-44. doi: 10.1016/j.tust.2018.10.019
|
[26] |
WANG G, LIU Y, HU Z, et al. Flood risk assessment of subway systems in metropolitan areas under land subsidence scenario: a case study of Beijing[J]. Remote Sensing, 2021, 13(4): 637. doi: 10.3390/rs13040637
|
[27] |
WU H, WANG J, LIU S, et al. Research on decision-making of emergency plan for waterlogging disaster in subway station project based on linguistic intuitionistic fuzzy set and TOPSIS[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4825-4851. doi: 10.3934/mbe.2020263
|
[28] |
黄莺, 刘梦茹, 魏晋果, 等. 基于韧性曲线的城市地铁网络恢复策略研究[J]. 灾害学, 2021, 36(1): 32-36. doi: 10.3969/j.issn.1000-811X.2021.01.007
HUANG Y, LIU M R, WEI J G, et al. Research on urban metro network recovery strategy based on resilience curve[J]. Journal of Catastrophology, 2021, 36(1): 32-36. (in Chinese) doi: 10.3969/j.issn.1000-811X.2021.01.007
|
[29] |
MARTELLO M V, WHITTLE A J, KEENAN J M, et al. Evaluation of climate change resilience for Boston's rail rapid transit network[J]. Transportation Research Part D: Transport and Environment, 2021, 97: 102908. doi: 10.1016/j.trd.2021.102908
|
[30] |
D'LIMA M, MEDDA F. A new measure of resilience: an application to the London underground[J]. Transportation Research Part A: Policy and Practice, 2015, 81: 35-46. doi: 10.1016/j.tra.2015.05.017
|
[31] |
JIN J G, TANG L C, SUN L, et al. Enhancing metro network resilience via localized integration with bus services[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 63: 17-30. doi: 10.1016/j.tre.2014.01.002
|
[32] |
陶婵娟. 考虑应急资源配置的地铁网络韧性评估与优化[D]. 武汉: 华中科技大学, 2020.
TAO C J. A resilience evaluation and optimization framework for metro networks considering emergency resource allocation[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
|
[33] |
吕彪, 管心怡, 高自强. 地铁网络服务韧性评估与最优恢复策略[J]. 交通运输系统工程与信息, 2021, 21(5): 198-205.
LYU B, GUAN X Y, GAO Z Q. Evaluation and optimal recovery strategy of metro network service resilience[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 198-205. (in Chinese)
|
[34] |
祝连波, 王世笛, 林陵娜, 等. 基于博弈论组合赋权-物元可拓模型的地铁车站抗涝韧性评估研究[J]. 灾害学, 2023, 38(3): 1-6. doi: 10.3969/j.issn.1000-811X.2023.03.001
ZHU L B, WANG S D, LIN L N, et al. Based on the combination of game theory and weighted matter-element extension model study on waterlogging resilience assessment of metro stations[J]. Journal of Catastrophology, 2023, 38(3): 1-6. (in Chinese) doi: 10.3969/j.issn.1000-811X.2023.03.001
|
[35] |
REED D A, KAPUR K C, CHRISTIE R D. Methodology for assessing the resilience of networked infrastructure[J]. IEEE Systems Journal, 2009, 3(2): 174-180. doi: 10.1109/JSYST.2009.2017396
|
[36] |
YODO N, WANG P, ZHOU Z. Predictive resilience analysis of complex systems using dynamic Bayesian networks[J]. IEEE Transactions on Reliability, 2017, 66(3): 761-770. doi: 10.1109/TR.2017.2722471
|
[37] |
HENRY D, RAMIREZ-MARQUEZ J E. Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering & System Safety, 2012, 99: 114-122.
|
[38] |
ZHU Y, OZBAY K, XIE K, et al. Using big data to study resilience of taxi and subway trips for hurricanes Sandy and Irene[J]. Transportation Research Record, 2016, 2599(1): 70-80. doi: 10.3141/2599-09and Buildings||236||110795|2021|||
|
[39] |
周聪. 基于仿真的城市轨道交通换乘站韧性评价与优化[D]. 北京: 北京交通大学, 2022.
ZHOU C. Resilient evaluation and optimization of urban rail transit transfer station based on simulation[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
|
[40] |
霍巧芬. 基于可拓云模型的地铁项目运营安全系统韧性评价研究[D]. 合肥: 安徽建筑大学, 2022.
HUO Q F. Resilience evaluation of metro project operation safety system based on extension cloud model[D]. Hefei: Anhui Jianzhu University, 2022. (in Chinese)
|
[41] |
TANG Y, HUANG S. Assessing seismic vulnerability of urban road networks by a Bayesian network approach[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 390-402. doi: 10.1016/j.trd.2019.02.003
|
[42] |
GOLDBECK N, ANGELOUDIS P, OCHIENG W Y. Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models[J]. Reliability Engineering & System Safety, 2019, 188: 62-79.
|
[43] |
张翕然, 陈绍宽, 汪波, 等. 考虑替代救援可靠度的应急配置优化模型[J]. 浙江大学学报(工学版), 2021, 55(1): 20-30.
ZHANG X R, CHEN S K, WANG B, et al. Emergency allocation optimization model considering reliability of replaceable rescue[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(1): 20-30. (in Chinese)
|
[44] |
HUANG Y, MANNINO C, YANG L, et al. Coupling time-indexed and big-M formulations for real-time train scheduling during metro service disruptions[J]. Transportation Research Part B: Methodological, 2020, 133: 38-61. doi: 10.1016/j.trb.2019.12.005
|
[45] |
WANG Y, ZHAO K, D'ARIANO A, et al. Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions[J]. Transportation Research Part B: Methodological, 2021, 152: 87-117. doi: 10.1016/j.trb.2021.08.003
|
[46] |
ZHU Y, GOVERDE R M P. Railway timetable rescheduling with flexible stopping and flexible shortturning during disruptions[J]. Transportation Research Part B: Methodological, 2019, 123: 149-181. doi: 10.1016/j.trb.2019.02.015
|
[47] |
LI S, ZHOU X, YANG L, et al. Automatic train regulation of complex metro networks with transfer coordination constraints: a distributed optimal control framework[J]. Transportation Research Part B: Methodological, 2018, 117: 228-253. doi: 10.1016/j.trb.2018.09.001
|
[48] |
崔欣, 路庆昌, 徐标, 等. 考虑公交接驳的地铁网络韧性评估及故障修复策略[J]. 都市快轨交通, 2023, 36(1): 93-98. doi: 10.3969/j.issn.1672-6073.2023.01.014
CUI X, LU Q C, XU B, et al. Resilience evaluation and failure recovery strategy of metro network considering bus connection scenario[J]. Urban Rapid Rail Transit, 2023, 36(1): 93-98. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.01.014
|
[49] |
程静, 卢群, 吴同政, 等. 地铁网络级联失效恢复策略韧性评估方法[J]. 交通信息与安全, 2023, 41(4): 173-184. doi: 10.3963/j.jssn.1674-4861.2023.04.018
CHENG J, LU Q, WU T Z, et al. A method for evaluating recovery strategies for cascade failures of metro networks[J]. Journal of Transport Information and Safety, 2023, 41(4): 173-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.018
|
[50] |
刘梦茹. 韧性视角下城市地铁网络最优恢复策略研究[D]. 西安: 西安建筑科技大学, 2021.
LIU M R. Study on optimal recovery strategy of urban subway network from the perspective of resilience[D]. Xi'an: Xi'an University of Architecture and Technology, 2021. (in Chinese)
|
[51] |
潘守政, 何佳, 王英平, 等. 环线对地铁网络弹性的影响研究[J]. 交通运输工程与信息学报, 2022, 20(4): 100-110.
PAN S Z, HE J, WANG Y P, et al. Influence of circle lines on the resilience of subway networks[J]. Journal of Transportation Engineering and Information, 2022, 20(4): 100-110. (in Chinese)
|
[52] |
马敏, 胡大伟, 舒兰, 等. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
MA M, HU D W, SHU L, et al. Resilience assessment and recovery strategy on urban rail transit network[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 396-404. (in Chinese)
|
[53] |
ZHANG H, LI S, WANG Y, et al. Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: a lagrangian relaxation-based decomposition algorithm[J]. Omega, 2021, 102: 102371. doi: 10.1016/j.omega.2020.102371
|