留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网络首发

网络首发栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
基于3D点云语义地图表征的智能车定位
朱云涛, 李飞, 胡钊政, 吴华伟
摘要(8933) PDF(6505)
摘要:
为提高智能车节点定位准确率,研究了基于3D点云语义地图表征的智能车定位方法。该方法分为3个部分:基于三维激光点云的语义分割,包括地面分割,交通标志牌分割和杆状语义目标分割;面向智能车的点云语义地图表征,利用分割的语义目标投影,生成带权有向图,语义路,语义编码,再以语义编码和高精度GPS的全局位置组成语义地图表征模型;基于语义表征模型的智能车定位,包括基于GPS匹配的粗定位和基于语义编码渐进匹配的节点定位。实验在3种长度不同、复杂度不同的道路场景下进行,节点定位准确率分别为98.5%,97.6%和97.8%,结果表明所提出的定位方法节点定位准确率高、鲁棒性强且适用于不同的道路场景。 为提高智能车节点定位准确率,研究了基于3D点云语义地图表征的智能车定位方法。该方法分为3个部分:基于三维激光点云的语义分割,包括地面分割,交通标志牌分割和杆状语义目标分割;面向智能车的点云语义地图表征,利用分割的语义目标投影,生成带权有向图,语义路,语义编码,再以语义编码和高精度GPS的全局位置组成语义地图表征模型;基于语义表征模型的智能车定位,包括基于GPS匹配的粗定位和基于语义编码渐进匹配的节点定位。实验在3种长度不同、复杂度不同的道路场景下进行,节点定位准确率分别为98.5%,97.6%和97.8%,结果表明所提出的定位方法节点定位准确率高、鲁棒性强且适用于不同的道路场景。
基于UWB定位的邮轮乘员伴随关系发现算法
严思迅, 吴兵, 商蕾, 吕洁印, 汪洋
摘要(8299) PDF(2961)
摘要:
为准确发现邮轮内部空间乘客之间的伴随关系,在室内环境安装UWB定位设备开展室内人员定位实验。根据UWB定位的位置数据特点,提出结合室内位置语义的Hausdorff-DBSCAN算法以聚类邮轮乘员轨迹,并利用LSTM神经网络对疑似伴随关系对象进行相似度变化趋势的预测。传统的Hausdorff算法在计算轨迹相似度时未考虑轨迹时序一致的问题,引入位置语义序列能够较好地解决这一问题。改进后的Hausdorff-DBSCAN算法的输入为乘员轨迹数据集,根据轨迹整体相似度阈值选定聚类半径,输出具有伴随关系的乘员轨迹聚类结果; LSTM神经网络以定长时间窗口的点邻近度序列为输入,预测后一时刻点邻近度值,结合轨迹相似度阈值和预测结果分析乘员伴随关系的时序变化。利用Anylogic建模单层邮轮室内环境进行乘员仿真得到的轨迹数据验证算法的有效性。改进的Hausdorff-DBSCAN算法的准确率为0.920,召回率为0.950,F1值为0.934,准确率高出对比算法至少5.7%,召回率高出对比算法至少8.0%,F1值高出对比算法至少6.7%。同时LSTM在预测邮轮乘员之间相似度变化时,收敛后的误差值能保持在3%~4%左右,预测结果具有较高的准确性。 为准确发现邮轮内部空间乘客之间的伴随关系,在室内环境安装UWB定位设备开展室内人员定位实验。根据UWB定位的位置数据特点,提出结合室内位置语义的Hausdorff-DBSCAN算法以聚类邮轮乘员轨迹,并利用LSTM神经网络对疑似伴随关系对象进行相似度变化趋势的预测。传统的Hausdorff算法在计算轨迹相似度时未考虑轨迹时序一致的问题,引入位置语义序列能够较好地解决这一问题。改进后的Hausdorff-DBSCAN算法的输入为乘员轨迹数据集,根据轨迹整体相似度阈值选定聚类半径,输出具有伴随关系的乘员轨迹聚类结果; LSTM神经网络以定长时间窗口的点邻近度序列为输入,预测后一时刻点邻近度值,结合轨迹相似度阈值和预测结果分析乘员伴随关系的时序变化。利用Anylogic建模单层邮轮室内环境进行乘员仿真得到的轨迹数据验证算法的有效性。改进的Hausdorff-DBSCAN算法的准确率为0.920,召回率为0.950,F1值为0.934,准确率高出对比算法至少5.7%,召回率高出对比算法至少8.0%,F1值高出对比算法至少6.7%。同时LSTM在预测邮轮乘员之间相似度变化时,收敛后的误差值能保持在3%~4%左右,预测结果具有较高的准确性。
基于描述符辅助光流跟踪匹配的数据关联方法
夏华佳, 章红平, 陈德忠, 李团
摘要(4481) PDF(1249)
摘要:
针对采用多状态约束卡尔曼滤波(MSCKF)的视觉惯性里程计定位精度易受特征点匹配异常值影响问题,提出了一种基于描述符辅助光流跟踪匹配的数据关联方法。该方法采用金字塔LK光流对序列图像中特征点进行跟踪匹配,计算每一对匹配点的rBRIEF描述符,根据Hamming距离对描述符的相似度进行判断消除异常匹配点。在实验中从特征点匹配主观效果以及定位精度两个方面评估本文方法的有效性。结果表明:所提出方法能够有效滤除动态场景下图像特征匹配的异常值,使用该方法处理后的图像进行MSCKF运动解算,位置结果漂移率小于0.38%,相较于未剔除异常匹配值的MSCKF算法结果,改善了54.7%,单帧图像处理时间约为39 ms。 针对采用多状态约束卡尔曼滤波(MSCKF)的视觉惯性里程计定位精度易受特征点匹配异常值影响问题,提出了一种基于描述符辅助光流跟踪匹配的数据关联方法。该方法采用金字塔LK光流对序列图像中特征点进行跟踪匹配,计算每一对匹配点的rBRIEF描述符,根据Hamming距离对描述符的相似度进行判断消除异常匹配点。在实验中从特征点匹配主观效果以及定位精度两个方面评估本文方法的有效性。结果表明:所提出方法能够有效滤除动态场景下图像特征匹配的异常值,使用该方法处理后的图像进行MSCKF运动解算,位置结果漂移率小于0.38%,相较于未剔除异常匹配值的MSCKF算法结果,改善了54.7%,单帧图像处理时间约为39 ms。
基于室内标志的视觉定位方法
黄刚, 蔡浩, 邓超, 何志, 许宁波
摘要(9796) PDF(1524)
摘要:
为解决室内交通场景中智能汽车和移动机器人进行定位计算的问题,利用室内场景中已存在的各类标志,引入BEBLID(Boosted Efficient Binary Local Image Descriptor)算法,提出1种视觉定位方法。对BEBLID算法进行改进,赋予其对图像整体进行特征表征的能力。将定位过程分解为离线阶段和在线阶段,离线阶段构建场景标志地图,在线阶段将当前图像所提取的全局和局部BEBLID特征与场景标志地图的对应特征进行匹配,引入KNN方法确定最近节点和最近图像,并利用场景特征地图中存储的标志坐标信息,进行度量计算,获取当前位置信息。在教学楼、办公楼和室内停车场场景进行实验,实验中对场景标志的正确识别率达到90%,平均定位误差小于1 m,与传统方法相比,同一样本下识别精度相对提升约10%,实验验证了算法的有效性。 为解决室内交通场景中智能汽车和移动机器人进行定位计算的问题,利用室内场景中已存在的各类标志,引入BEBLID(Boosted Efficient Binary Local Image Descriptor)算法,提出1种视觉定位方法。对BEBLID算法进行改进,赋予其对图像整体进行特征表征的能力。将定位过程分解为离线阶段和在线阶段,离线阶段构建场景标志地图,在线阶段将当前图像所提取的全局和局部BEBLID特征与场景标志地图的对应特征进行匹配,引入KNN方法确定最近节点和最近图像,并利用场景特征地图中存储的标志坐标信息,进行度量计算,获取当前位置信息。在教学楼、办公楼和室内停车场场景进行实验,实验中对场景标志的正确识别率达到90%,平均定位误差小于1 m,与传统方法相比,同一样本下识别精度相对提升约10%,实验验证了算法的有效性。
面向智能网联汽车定位的协同地图匹配算法
陈伟, 杜路遥, 孔海洋, 傅率智, 郑洪江
摘要(9987) PDF(1344)
摘要:
为实现智能网联环境下低成本、高精度的车辆定位,研究了基于自适应遗传Rao-Blackwellized粒子滤波的协同地图匹配算法。利用联网车辆的定位信息和道路约束条件消除公共偏差,提高车辆定位精度。将自适应遗传算法引入到粒子滤波的重采样过程中,增加粒子的多样性,解决传统粒子滤波算法中容易出现的“粒子退化”和“粒子耗尽”问题。通过仿真实验与传统粒子滤波及卡尔曼平滑粒子滤波下的定位结果进行了对比,同时分析了不同联网车辆数目对定位精度的影响。通过实际测试验证了算法在实际应用中的定位效果。实测结果表明:以典型十字路口为例,在联网车辆数目为4的情况下,协同地图匹配算法的定位误差范围为1.67 m,分别为原始GNSS定位以及单车地图匹配定位结果的41.03%和56.80%。同时,该算法的统计定位精度(CEP)达到1.06 m,比GNSS原始定位精度提高了2.52 m,具有较好的定位效果。 为实现智能网联环境下低成本、高精度的车辆定位,研究了基于自适应遗传Rao-Blackwellized粒子滤波的协同地图匹配算法。利用联网车辆的定位信息和道路约束条件消除公共偏差,提高车辆定位精度。将自适应遗传算法引入到粒子滤波的重采样过程中,增加粒子的多样性,解决传统粒子滤波算法中容易出现的“粒子退化”和“粒子耗尽”问题。通过仿真实验与传统粒子滤波及卡尔曼平滑粒子滤波下的定位结果进行了对比,同时分析了不同联网车辆数目对定位精度的影响。通过实际测试验证了算法在实际应用中的定位效果。实测结果表明:以典型十字路口为例,在联网车辆数目为4的情况下,协同地图匹配算法的定位误差范围为1.67 m,分别为原始GNSS定位以及单车地图匹配定位结果的41.03%和56.80%。同时,该算法的统计定位精度(CEP)达到1.06 m,比GNSS原始定位精度提高了2.52 m,具有较好的定位效果。