留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向复杂空域的多航空器交互风险评估方法

艾毅 万琪峰 韩珣 李玥阳 庾映雪 丛玮

艾毅, 万琪峰, 韩珣, 李玥阳, 庾映雪, 丛玮. 面向复杂空域的多航空器交互风险评估方法[J]. 交通信息与安全, 2024, 42(3): 1-10. doi: 10.3963/j.jssn.1674-4861.2024.03.001
引用本文: 艾毅, 万琪峰, 韩珣, 李玥阳, 庾映雪, 丛玮. 面向复杂空域的多航空器交互风险评估方法[J]. 交通信息与安全, 2024, 42(3): 1-10. doi: 10.3963/j.jssn.1674-4861.2024.03.001
AI Yi, WAN Qifeng, HAN Xun, LI Yueyang, YU Yingxue, CONG Wei. A Risk Assessment Method of Multi-aircraft Interaction for Complex Airspace[J]. Journal of Transport Information and Safety, 2024, 42(3): 1-10. doi: 10.3963/j.jssn.1674-4861.2024.03.001
Citation: AI Yi, WAN Qifeng, HAN Xun, LI Yueyang, YU Yingxue, CONG Wei. A Risk Assessment Method of Multi-aircraft Interaction for Complex Airspace[J]. Journal of Transport Information and Safety, 2024, 42(3): 1-10. doi: 10.3963/j.jssn.1674-4861.2024.03.001

面向复杂空域的多航空器交互风险评估方法

doi: 10.3963/j.jssn.1674-4861.2024.03.001
基金项目: 

国家自然科学基金项目 62203451

智能警务四川省重点实验室开放课题 ZNJW2023KFMS001

智能警务四川省重点实验室开放课题 ZNJW2024KFQN007

四川省科技计划项目 2023JDRC0004

详细信息
    作者简介:

    艾毅(1988—),博士,副教授. 研究方向:交通运输规划与管理. E-mail: aiyi@cafuc.edu.cn

    通讯作者:

    韩珣(1991—),博士,副教授. 研究方向:交通信息工程及控制、交通安全等. E-mail: hldwxhx@163.com

  • 中图分类号: U8

A Risk Assessment Method of Multi-aircraft Interaction for Complex Airspace

  • 摘要: 为评估复杂交通场景下的多航空器的交互风险,由空中交通风险与势场理论的相似性,创新性地提出了“多航空器与空域环境的交互势场”概念。构造以航空器、空域点关键及航路为势场源的交互势场,并分别提出了航空器、空域关键点及航路交互势场的生成函数模型;构造随时间变化的历史航迹势场模型,提出考虑历史航迹的短期影响效应的交互势场修正方法;考虑航空器在水平与垂直维度的多场景安全间隔标准,求解满足安全间隔标准的交互势场生成函数参数;考虑多势场源的交互特征,提出了航空器、空域关键点及航路交互势场的融合机制。借鉴势场力与势能的转化关系,提出了基于势能的航空器交互风险指标RPE,从能量的角度,揭示了多航空器交互以及航空器与空域环境交互的风险变化过程。为验证评估方法的有效性,以国内某真实扇区为场景开展仿真实验,结果表明:①与其他风险表征指标相比,所提的交互风险指标RPE更接近于空中交通管制员感知到的风险指数;②在某些区间,RPE表现的更为灵敏,平均绝对误差为0.077,明显低于传统基于冲突时间的风险指数RATSR。综上,本文所提出的交互风险评估方法有望为未来空中复杂交通场景的风险管理提供更加精确的决策支撑。

     

  • 图  1  航空器保护区模型

    Figure  1.  The influence zone of the aircraft

    图  2  高度相对于参数c的变化

    Figure  2.  Variation in the altitude relative to parameter c

    图  3  势场强度在速度方向上相对于距离的变化

    Figure  3.  Variation in potential field strength relative to distance in the velocity direction

    图  4  航空器的势场分布

    Figure  4.  The distribution of the potential field for an aircraft

    图  5  多航空器交互的势场分布

    Figure  5.  Potential field distribution in multi-aircraft interaction

    图  6  关键点生成的势场

    Figure  6.  Potential field generation of waypoint

    图  7  势场强度随离空域关键点距离的变化

    Figure  7.  Variation in potential field strength relative to distance from the waypoint

    图  8  航路生成的势场

    Figure  8.  Variation in potential field strength relative to distance from the route

    图  9  势场强度随航路距离的变化

    Figure  9.  Variation in potential field strength relative to distance from the route

    图  10  多航空器、空域关键点、航路势场交互

    Figure  10.  Variation in potential field strength relative to distance from the route

    图  11  参考航迹集的时空边界

    Figure  11.  Spatio-temporal boundary for reference trajectory set

    图  12  交互势场的修正步骤

    Figure  12.  Interaction potential field correction steps

    图  13  管制扇区结构和面向扇区的雷达监视仿真

    Figure  13.  Control sector structure and Sector-oriented radar surveillance simulation

    图  14  3种模型的对比

    Figure  14.  Comparison of the three models

    图  15  航空器RSE风险和RPE风险的混淆矩阵

    Figure  15.  Confusion matrix of aircraft RSE risk and RPE risk

    图  16  航空器RSE风险和RATSR风险的混淆矩阵

    Figure  16.  Confusion matrix of aircraft RSE risk and RATSR risk

    图  17  风险系数随扇区流量、与空域关键点距离的变化趋势

    Figure  17.  Trend of RPE changes with sector volume and distance from waypoint

    表  1  扇区交通流仿真

    Table  1.   Sector traffic flow simulation

    航路段 参数
    长度/km 方向角/(°) 交通量/(架/h) 流入量/(架/h) 流出量/(架/h) 重型飞机比例
    B213 186 187 5.8 3.1 2.7 0.19
    A581 245 218 3.3 1.5 1.8 0.11
    I248 162 250 3.1 1.6 1.5 0.14
    I793 108 294 4.6 2.1 2.5 0.16
    A461 56 62 2.6 1.1 1.5 0.08
    R343 57 76 3.2 1.4 1.8 0.11
    下载: 导出CSV

    表  2  航空器风险评估结果对比

    Table  2.   Comparison of aircraft risk assessment results

    航空器编号 RPE RATSR RSEm Error_PE Error_ATSR
    F1001 15.43 0.52 1.50 0.09 0.22
    F1002 25.58 0.86 3.50 -0.06 0.16
    F1003 18.72 0.61 2.50 -0.03 0.11
    F1017 33.62 0.83 4.50 -0.06 -0.07
    F1018 31.75 0.82 3.50 0.09 0.12
    F1019 25.21 0.63 2.50 0.13 0.13
    F1020 7.34 0.25 0.50 0.08 0.15
    F1055 9.43 0.21 1.50 -0.06 -0.09
    F1056 22.56 0.73 2.50 0.06 0.23
    F1057 24.28 0.82 3.50 -0.09 0.12
    F1058 31.96 0.83 4.50 -0.10 -0.07
    F1059 3.38 0.24 0.50 -0.02 0.14
    F1060 24.86 0.76 3.50 -0.08 0.06
    F1109 15.28 0.71 2.50 -0.12 0.21
    F1110 14.53 0.44 1.50 0.06 0.14
    F1111 24.63 0.82 3.50 -0.08 0.12
    F1112 38.97 0.84 4.50 0.07 -0.06
    F1113 10.69 0.45 1.50 -0.03 0.15
    F1114 33.22 0.83 3.50 0.13 0.13
    均值 21.65 0.64 2.71 0.077 0.131
    下载: 导出CSV
  • [1] 中国民用航空局. 2017年全国民航航班运行效率报告[R]. 北京: 中国民用航空局运行监控中心, 2018.

    Civil Aviation Administration of China(CAAC). Report on national civil aviation flight operation efficiency in 2017[R]. Beijing: Center for CAAC Operation Monitoring, 2018. (in Chinese)
    [2] VISINTINI A, GLOVER W, LYGEROS J, et al, Monte Carlo optimization for conflict resolution in air traffic control[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4)470-482. doi: 10.1109/TITS.2006.883108
    [3] WANG J, WU J, LI Y. The driving safety field based on driv-er-vehicle-road interactions[J]. IEEE Transactions on Intelli-gent Transportation Systems, 2015, 16(4): 2203-2214. doi: 10.1109/TITS.2015.2401837
    [4] 朱永文, 谢华, 蒲钒, 等. 空域网格化方法及其在空管中的应用研究[J]. 航空工程进展, 2021, 12(4): 12-24.

    ZHU Y W, XIE H, PU F, et al. Spatial grid method and its application in air traffic control[J]. Advances in Aeronauti-cal Science and Engineering, 2021, 12(4): 12-24. (in Chinese)
    [5] 王红勇, 温瑞英. 基于复杂网络的空中交通态势风险评估方法[J]. 中国安全科学学报, 2018, 28(5): 172-178.

    WANG H Y, WEN R Y. Complex network-based risk assess-ment method for air traffic posture[J] China Safety Science Journal, 2018, 28(5): 172-178. (in Chinese)
    [6] LI B, DU W, ZHANG Y, et al. A deep unsupervised learning approach for airspace complexity evaluation[J]. IEEE Trans-actions on Intelligent Transportation Systems, 2022, 23(8): 11739-11751. doi: 10.1109/TITS.2021.3106779
    [7] JIANG Y, WANG S, YAO Z, et al. A cellular automata model for mixed traffic flow considering the driving behavior of con-nected automated vehicle platoons[J]. Physica A, 2021, 582: 126262. doi: 10.1016/j.physa.2021.126262
    [8] LI L, WANG C, ZHANG Y. Microscopic state evolution mod-el of mixed traffic flow based on potential field theory[J]. Physica A, 2022, 607: 128185. doi: 10.1016/j.physa.2022.128185
    [9] BYRNE S, NAEEM W, FERGUSON S. Improved APF strate-gies for dual-arm local motion planning[J]. Transaction of the Institute of Measurement and Control, 2015, 37(1): 73-90. doi: 10.1177/0142331214532002
    [10] WOLF M T, BURDICK J W. Artificial potential functions for highway driving with collision avoidance. [C]. IEEE In-ternational Conference on Robotics Automation, Pasadena: IEEE, 2008.
    [11] 陈永, 贺红, 张薇, 等. 基于场力的驾驶员影响因素交通流动力学模型[J]. 力学学报, 2018, 50(5): 1219-1234.

    CHEN Y, HE H, ZHANG W, et al. A driver influenced fac-tor traffic flow dynamics model based on field forces[J]. Chi-nese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1219-1234. (in Chinese)
    [12] NI D, WANG H. A unified perspective on traffic flow theory Part Ⅲ: validation and benchmarking. [J]. Applied Mathe-matical Sciences, 2013, 7(40): 1965-1982.
    [13] WANG J, WU J, ZHENG X, et al. Driving safety field theo-ry modeling and its application in precollision warning sys-tem[J]. Transportation Research Part C: Emerging Technolo-gies, 2016, 72: 306-324. doi: 10.1016/j.trc.2016.10.003
    [14] 管祥民, 吕人力. 基于混合人工势场与蚁群算法的多飞行器冲突解脱方法[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(1): 28-33. doi: 10.3963/j.issn.2095-3844.2020.01.006

    GUAN X M, LYU R L. Conflict resolution method for multi-ple aircraft based on hybrid artificial potential field and ant colony algorithm[J]. Journal of Wuhan University of Tech-nology(Transportation Science & Engineering), 2020, 44(1): 28-33(in Chinese). doi: 10.3963/j.issn.2095-3844.2020.01.006
    [15] LIU W, LI Z. Comprehensive predictive control method for automated vehicles in dynamic traffic circumstances[J]. IET Intelligent Transport Systems, 2018, 12(10): 1455-1463. doi: 10.1049/iet-its.2018.5142
    [16] LI M, SONG X, CAO H, et al. Shared control with a novel dynamic authority allocation strategy based on game theory and driving safety field[J]. Mechanical Systems and Signal Processing, 2019, 124: 199-216. doi: 10.1016/j.ymssp.2019.01.040
    [17] 庞笔照. 航路网络关键结构分析及优化[D]. 天津: 中国民航大学, 2019.

    PANG B Z. Critical structure analysis and optimization for air route network[D]. Tianjing: Civil Aviation University of China, 2019. (in Chinese)
    [18] 张旭. 繁忙空域的临时航线划设与评估研究[D]. 天津: 中国民航大学, 2021.

    ZHANG X. Study on temporary route planning and evalua-tion in busy airspace[D]. Tianjing: Civil Aviation University of China, 2021. (in Chines)
    [19] LI L H, GAN J, QU X, et al. A novel lane-changing model of connected and automated vehicles: using the safety potential field theory[J]. Physica A, 2020, 559: 125039. doi: 10.1016/j.physa.2020.125039
    [20] LI L H, GAN J, QU X, et al. Dynamic driving risk potential field model under the connected and automated vehicles en-vironment and its application in car-following modeling[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 122-141. doi: 10.1109/TITS.2020.3008284
    [21] 徐涛, 陈雪蕊, 吕宗平. 基于航迹聚类的终端区飞行程序轨迹表示[J]. 四川大学学报(工程科学版), 2016, 48(6): 188-196.

    XU T, CHEN X R, LYU Z P. Flight procedure representation of terminal area based on flight tracks clustering[J]. Advanced Engineering Sciences, 2016, 48(6): 188-196. (in Chinese)
    [22] AI Y, LI Y Y, HAN X, et al. Real-time risk assessment meth-od for multi-aircraft interaction based on potential field theo-ry[J]. Physica A: Statistical Mechanics and its Applications, 2024, 633: 129423. doi: 10.1016/j.physa.2023.129423
    [23] 冯霞, 孙琦琦, 左海超. 基于Informer的客机长时4D航迹预测方法[J]. 交通信息与安全, 2023, 41(4): 111-121.

    FENG X, SUN Q Q, ZUO H C. A method for predicting long-term 4D trajectory of airplanes based on informer[J]. Journal of Transport Information and Safety, 2023, 41(04): 111-121. (in Chinese)
    [24] 纪新雨, 初建宇, 李印凤, 等. 基于改进CURE算法的终端区航迹聚类[J]. 指挥信息系统与技术, 2021, 12(6): 63-67.

    JI X Y, CHU J Y, LI Y F, et al. Terminal area trajectory cluster-ing based on improved cure algorithm[J]. Command Informa-tion System and Technology, 2021, 12(6): 63-67. (in Chinese)
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  911
  • HTML全文浏览量:  850
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-24
  • 网络出版日期:  2024-10-21

目录

    /

    返回文章
    返回