留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人机混驾条件下的车辆纵向交互安全影响因素分析

王艺贇 余荣杰

王艺贇, 余荣杰. 人机混驾条件下的车辆纵向交互安全影响因素分析[J]. 交通信息与安全, 2024, 42(3): 11-19. doi: 10.3963/j.jssn.1674-4861.2024.03.002
引用本文: 王艺贇, 余荣杰. 人机混驾条件下的车辆纵向交互安全影响因素分析[J]. 交通信息与安全, 2024, 42(3): 11-19. doi: 10.3963/j.jssn.1674-4861.2024.03.002
WANG Yiyun, YU Rongjie. An Analysis of Safety Influencing Factors for Longitudinal Interaction Between Vehicles in Human-machine Mixed Traffic Driving Conditions[J]. Journal of Transport Information and Safety, 2024, 42(3): 11-19. doi: 10.3963/j.jssn.1674-4861.2024.03.002
Citation: WANG Yiyun, YU Rongjie. An Analysis of Safety Influencing Factors for Longitudinal Interaction Between Vehicles in Human-machine Mixed Traffic Driving Conditions[J]. Journal of Transport Information and Safety, 2024, 42(3): 11-19. doi: 10.3963/j.jssn.1674-4861.2024.03.002

人机混驾条件下的车辆纵向交互安全影响因素分析

doi: 10.3963/j.jssn.1674-4861.2024.03.002
基金项目: 

国家自然科学基金项目 52172349

详细信息
    作者简介:

    王艺贇(1995—),博士研究生. 研究方向:交通安全. E-mail: wangyiyun@tongji.edu.cn

    通讯作者:

    余荣杰(1989—),博士,教授. 研究方向:交通安全等. E-mail: yurongjie@tongji.edu.cn

  • 中图分类号: U491

An Analysis of Safety Influencing Factors for Longitudinal Interaction Between Vehicles in Human-machine Mixed Traffic Driving Conditions

  • 摘要: 自动驾驶汽车正向现有交通运行环境中逐步渗透,形成了与人工驾驶汽车混合运行的人机混驾交通流。有研究表明:自动驾驶汽车的百公里事故率为9.1,高出人工驾驶汽车(4.1)的1倍多;另外,人机纵向交互造成的追尾事故形态占所有事故形态的57.5%,远超过人类驾驶的27.9%,因此亟需研究人机纵向交互安全影响机理。现有研究通常采用驾驶模拟实验,分析虚拟仿真环境下人工驾驶汽车驾驶人与自动驾驶汽车的纵向交互行为与安全性,但模拟环境与实际道路场景差异较大,难以准确反映人机混驾交通流中的真实车辆交互行为。通过自动驾驶汽车开放道路测试数据,获取真实混驾条件下的车辆纵向交互场景,对车辆类型、行驶环境等影响因素与纵向交互行为及安全的影响机理开展研究。具体针对筛选后的人工驾驶汽车驾驶人分别跟驰人工驾驶汽车和跟驰自动驾驶汽车的场景数据,利用结构方程模型,构建了前车驾驶行为、前车车辆类型、路段运行速度水平与交互安全替代指标之间的链式作用关系。模型结果表明:前车车辆类型是否为自动驾驶汽车是影响纵向交互安全的显著影响因素之一,其他变量保持不变时,人工驾驶汽车驾驶人与自动驾驶前车的交互安全性相较于人类驾驶前车降低。

     

  • 图  1  交通运行状态提取流程图

    Figure  1.  Traffic operation status extraction flowchart

    图  2  人机纵向交互安全结构方程模型

    Figure  2.  Equation model of the interactive safety between human and automated vehicles

    图  3  驾驶行为表征变量相关性矩阵图

    Figure  3.  Correlation matrix plot of driver behavior characterization variables

    图  4  修正后的结构方程模型标准化路径系数

    Figure  4.  Standardized path coefficients of the modified structural equation model

    表  1  数据变量及描述

    Table  1.   Data variables and descriptions

    变量 描述
    Segment_id 场景编号
    Local_time 场景时间/ (0.1 s)
    Local_id 本车编号
    Leader_id 前车编号
    Processed_position 处理后的位置信息/(m
    Length 车长/m
    下载: 导出CSV

    表  2  变量描述性统计

    Table  2.   Descriptive analysis of variables

    特征变量 前车类型
    AV HDV
    平均速度(/m/s) 8.47(6.66) 6.83(5.84)
    速度变异系数 42.51(40.05) 49.07(34.93)
    速度时间波动性 11.93(19.00) 14.10(24.19)
    MTTC/s 6.19(7.29) 4.68(3.29)
    路段速度平均水平(/m/s) 7.75(6.01)
    注:值为平均值(标准差)。
    下载: 导出CSV

    表  3  AV和HDV前车类型驾驶行为特征差异性检验

    Table  3.   Significance test for driving behavioral characteristics between AVs and HDVs

    驾驶行为特征变量 P
    平均速度 0.000 2
    速度变异系数 0.015 5
    速度时间波动性 0.120 9
    下载: 导出CSV

    表  4  结构方程模型的拟合指标

    Table  4.   Fitting goodness of structural model

    指标 判别标准 拟合值
    比较拟合指数(CFI) ≥0.90 0.980
    调整适配度(AGFI) ≥0.80 0.925
    适配度(GFI) ≥0.90 0.975
    估计误差均方根(RMSEA) <0.10 0.097
    下载: 导出CSV

    表  5  前车驾驶行为测量模型的标准化路径系数

    Table  5.   Factor loads of the driving behaviors of the leading vehicles obtained by measurement model

    潜在变量 观测变量 标准化路径系数
    前车驾驶行为 平均速度 -0.411
    速度变异系数 0.863
    速度时间波动性 0.589
    车辆类型 0.402
    下载: 导出CSV

    表  6  结构方程模型的标准化路径系数

    Table  6.   Standardized path coefficients for structural equation model

    路径 路径系数 S.E. P
    路段速度水平→前车驾驶行为 -0.54 0.032 ***
    路段速度水平→MTTC -0.46 0.043 ***
    前车驾驶行为→MTTC -0.44 0.044 ***
    前车车辆类型→MTTC 0.19 0.008 ***
    注:S. E. 为标准化误差;P为显著性:***表示p<0. 001。
    下载: 导出CSV
  • [1] WAYMO L L C. We're building the world's most experienced driver[R/OL]. (2019-09-05)[2023-08-16]. https://waymo.com.
    [2] 魏文. 华为预测2030年自动驾驶新车渗透率达20%, 智能汽车时代临近?[R/OL]. (2021-09-23)[2023-08-16]. https://m.yicai.com/news/101181289.html.

    WEI W. The penetration rate of new autonomous vehicles in China is expected to reach 20% by 2030. [EB/OL]. (2021-09-23)[2023-08-16]. https://m.yicai.com/news/101181289.html.
    [3] TAHIR Z, ALEXANDER R. Coverage based testing for V&V and safety assurance of self-driving autonomous vehicles: a systematic literature review[C]. IEEE International Conference on Artificial Intelligence Testing(AITest), Oxford, UK: IEEE, 2020.
    [4] MAHDINIA I, MOHAMMADNAZAR A, ARVIN R, et al. Integration of automated vehicles in mixed traffic: evaluating changes in performance of following human-driven vehicles[J]. Accident Analysis & Prevention, 2021, 152: 106006.
    [5] SCHOETTLE B, SIVAK M. A preliminary analysis of real-world crashes involving self-driving vehicles[R]. Ann Arbor, USA: University of Michigan Transportation Research Institute, 2015.
    [6] XU C, DING Z, WANG C, et al. Statistical analysis of the patterns and characteristics of connected and autonomous vehicle involved crashes[J]. Journal of Safety Research, 2019, 71: 41-47. doi: 10.1016/j.jsr.2019.09.001
    [7] MA Z, ZHANG Y. Driver-automated Vehicle interaction in mixed traffic: types of interaction and drivers' driving styles[J]. Human Factors, 2024, 66(2): 544-561. doi: 10.1177/00187208221088358
    [8] STANGE V, KUHN M, VOLLRATH M. Safety at first sight? - manual drivers' experience and driving behavior at first contact with Level 3 vehicles in mixed traffic on the highway[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 87: 327-346. doi: 10.1016/j.trf.2022.04.004
    [9] REDDY N, HOOGENDOORN S P, FARAH H. How do the recognizability and driving styles of automated vehicles affect human drivers' gap acceptance at T-Intersections?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 90: 451-465. doi: 10.1016/j.trf.2022.09.018
    [10] HUANG Y, YE Y, SUN J, et al. Characterizing the impact of autonomous vehicles on macroscopic fundamental diagrams[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 6530-6541. doi: 10.1109/TITS.2023.3265647
    [11] WEN X, CUI Z, JIAN S. Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset[J]. Accident Analysis & Prevention, 2022, 172: 106689.
    [12] WANG Y, FARAH H, YU R, et al. Characterizing behavioral differences of autonomous vehicles and human-driven vehicles at signalized intersections based on Waymo open dataset[J]. Transportation Research Record, 2023, 2677(11): 324-337. doi: 10.1177/03611981231165783
    [13] HU X, ZHENG Z, CHEN D, et al. Autonomous vehicle's impact on traffic: empirical evidence from Waymo open dataset and implications from modelling[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (6) : 6711-6724. doi: 10.1109/TITS.2023.3258145
    [14] YU R, ZHENG Y, QIN Y, et al. Utilizing partial least-squares path modeling to analyze crash risk contributing factors for Shanghai urban expressway system[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2019, 5(4): 05019001. doi: 10.1061/AJRUA6.0001022
    [15] WAYMO L L C. Waymo open dataset[R/OL]. (2019)[2023-08-16]. https://waymo.com/open/.
    [16] HOUSTON J, ZUIDHOF G, BERGAMINI L, et al. One thousand and one hours: self-driving motion prediction dataset[C]. Conference on Robot Learning, London, UK: PMLR, 2021.
    [17] CAESAR H, BANKITI V, LANG A, et al. Nuscenes: a multimodal dataset for autonomous driving[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA: IEEE, 2020.
    [18] PUNZO V, MONTANINO M, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the next generation simulation(NGSIM)program data[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1243-1262. doi: 10.1016/j.trc.2010.12.007
    [19] SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020.
    [20] ETTINGER S, CHENG S, CAINE B, et al. Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset[C]. IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021.
    [21] SUN Z, YAO X, QIN Z, et al. Modeling car-following heterogeneities by considering leader-follower compositions and driving style differences[J]. Transportation Research Record, 2021, 2675(11): 851-864. doi: 10.1177/03611981211020006
    [22] HU X, ZHENG Z, CHEN D, et al. Processing, assessing, and enhancing the Waymo autonomous vehicle open dataset for driving behavior research[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103490. doi: 10.1016/j.trc.2021.103490
    [23] WANG C, XIE Y, HUANG H, et al. A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling[J]. Accident Analysis & Prevention, 2021, 157: 106157.
    [24] 鄢云珠, 傅忠宁, 岳金田. 车辆怠速起停系统使用意愿结构方程模型及影响因素分析[J]. 交通信息与安全, 2023, 41(6): 161-170.

    YAN Y Z, FU Z N, YUE J T. An analysis of the influence factors on using intention of vehicle idle start-stop system with a structural equation model[J]. Journal of Transport Information and Safety, 2023, 41(6): 161-170. (in Chinese)
    [25] 王永岗, 张衡, 彭志鹏, 等. 基于结构方程模型的出租车事故影响因素分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(6): 36. doi: 10.3969/j.issn.1674-0696.2021.06.06

    WANG Y G, ZHANG H, PENG Z P, et al. Analysis of influencing factors of taxi accidents based on structural equation model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(6): 36. (in Chinese) doi: 10.3969/j.issn.1674-0696.2021.06.06
    [26] 陈春. 道路交通事故的影响因素研究: 基于结构方程模型的实证研究[J]. 中国安全生产科学技术, 2014, 10(5): 110-116.

    CHEN C. Research on influencing factors of road traffic accidents: empirical study based on structural equation model[J]. Journal of Safety Science and Technology, 2014, 10 (5): 110-116. (in Chinese)
    [27] 姚荣涵, 祁文彦, 郭伟伟. 自动驾驶环境下驾驶人接管行为结构方程模型[J]. 交通运输工程学报, 2021, 21(2): 209-221.

    YAO R H, QI W Y, GUO W W. Structural equation model of drivers' takeover behaviors in autonomous driving environment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 209-221. (in Chinese)
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  121
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-16
  • 网络出版日期:  2024-10-21

目录

    /

    返回文章
    返回