留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速公路隧道区域纵向风险驾驶行为时空特征

贺超群 马社强

贺超群, 马社强. 高速公路隧道区域纵向风险驾驶行为时空特征[J]. 交通信息与安全, 2024, 42(4): 53-61. doi: 10.3963/j.jssn.1674-4861.2024.04.006
引用本文: 贺超群, 马社强. 高速公路隧道区域纵向风险驾驶行为时空特征[J]. 交通信息与安全, 2024, 42(4): 53-61. doi: 10.3963/j.jssn.1674-4861.2024.04.006
HE Chaoqun, MA Sheqiang. Spatiotemporal Characteristics of Longitudinal Risky Driving Behaviors in Highway Tunnel Sections[J]. Journal of Transport Information and Safety, 2024, 42(4): 53-61. doi: 10.3963/j.jssn.1674-4861.2024.04.006
Citation: HE Chaoqun, MA Sheqiang. Spatiotemporal Characteristics of Longitudinal Risky Driving Behaviors in Highway Tunnel Sections[J]. Journal of Transport Information and Safety, 2024, 42(4): 53-61. doi: 10.3963/j.jssn.1674-4861.2024.04.006

高速公路隧道区域纵向风险驾驶行为时空特征

doi: 10.3963/j.jssn.1674-4861.2024.04.006
基金项目: 

国家重点研发计划项目 2023YFB4302702

详细信息
    作者简介:

    贺超群(1997—),硕士研究生.研究方向:道路交通安全. E-mail: hecq8317@outlook.com

    通讯作者:

    马社强(1973—),博士,副教授.研究方向:道路交通安全. E-mail: masheqiang@sina.com

  • 中图分类号: U492.8

Spatiotemporal Characteristics of Longitudinal Risky Driving Behaviors in Highway Tunnel Sections

  • 摘要: 为了精准定位纵向风险驾驶行为在隧道路段的形态、位置及时间,增强交通管理部门主动预防交通事故的能力,针对传统时空分析维度分离的局限性,研究建立了时空维度结合的时空核密度估计模型(spatio-temporal kernel density estimation,STKDE),采用最小交叉二乘验证(least squares cross-validation,LSCV)确定模型最佳带宽。构建了基于轨迹数据的纵向风险驾驶行为识别方法,提取超速、超低速、急加速、急减速共4种纵向风险驾驶行为的时空位置;将隧道时空域分割为时空单元后,应用STKDE计算各时空单元内纵向风险驾驶行为时空核密度估计值ψ;结合时空立方体(space-time cube,ST-Cube)对STKDE结果可视化。基于下细腰隧道全域高精度轨迹数据进行实例分析,研究发现:高速驾驶行为在隧道出口100 m区域内高发,超速高发于16:00与09:00;低速驾驶行为在隧道入口前200 m高发,超低速高发于02:00与14:00;在进入隧道前100 m和隧道0~1 500 m区域,急加速与急减速行为的ψ始终大于0.5,处于高发状态,且在隧道区间内每隔150~200 m,2种急变速驾驶行为会同步出现波动,在驶离隧道后2种行为均迅速减少,且不再高发。通过与传统时空分析方法对比,结果表明:结合ST-Cube的STKDE分析方法,能实现耦合时空的特征分析,并量化估计全时空域内风险驾驶行为发生的可能性,其在对急加减速驾驶行为的特征分析中存在一定优势。

     

  • 图  1  山西五盂高速示意图

    Figure  1.  Schematic diagram of Shanxi Wuyu expressway

    图  2  隧道坐标系示意图

    Figure  2.  Tunnel coordinate diagram

    图  3  时空立方体模型示意图

    Figure  3.  Schematic diagram of the space-time cube model

    图  4  时空立方体可视化透视图

    Figure  4.  Visualization of space-time Cube

    图  5  STKDE时间维映射矩阵

    Figure  5.  STKDE time-dimensional mapping matrix

    图  6  常规分析时间特征矩阵

    Figure  6.  Regular analysis time feature matrix

    图  7  STKDE空间维度映射曲线

    Figure  7.  STKDE spatial dimensional mapping curve

    图  8  常规分析空间特征曲线

    Figure  8.  Spatial characteristic curve of conventional analysis

    图  9  STKDE累积频率曲线

    Figure  9.  Cumulative frequency curve of STKDE results

    表  1  轨迹数据信息

    Table  1.   Track data information

    字段 字段说明 单位
    GlobalID 车辆全局编号
    Timestamp 时间戳 ms
    PositionX 车辆纵向位置(平行道路方向距离道路起点的长度) m
    PositionY 车辆实际横向偏移(车辆距离道路内侧路缘线的偏移量) m
    VelocityX 纵向车速 m/s
    VelocityY 横向车速 m/s
    GlobalID 车辆全局编号
    下载: 导出CSV

    表  2  隧道路段分车道速度特征统计

    Table  2.   Statistics of lane splitting speed characteristics of tunnel sections

    车道 V/(km/h) V85/(km/h) V15/(km/h) Vmax/(km/h) Vmin/(km/h) N/veh
    1 60.93 72.00 50.40 111.60 19.80 1 021
    2 66.53 75.60 55.80 136.80 18.90 2 040
    注:N为在指定车道上行驶过的车辆数。
    下载: 导出CSV

    表  3  超速与超低速高发时空(前10)

    Table  3.   Time and space of high speed and ultra-low speed(top 10)

    排名 超速 超低速
    X/m 车道Y 时间T X/m 车道Y 时间T
    1 1 600 2 16:00 -200 1 02:00
    2 1 600 2 09:00 -170 1 02:00
    3 1 590 2 16:00 -190 1 02:00
    4 1 590 2 09:00 -140 1 02:00
    5 1 600 1 16:00 -180 1 02:00
    6 1 580 2 09:00 -150 1 02:00
    7 1 580 2 16:00 -160 1 02:00
    8 1 590 1 16:00 -130 1 02:00
    9 1 600 2 17:00 -120 1 02:00
    10 1 570 2 09:00 -110 1 02:00
    下载: 导出CSV

    表  4  单车高速与单车低速高发时空(前10)

    Table  4.   Single-vehicle high-speed and single-vehicle low-speed high incidence times(top 10)

    排名 单车高速 单车低速
    X/m 车道Y 时间T X/m 车道Y 时间T
    1 1 600 2 \ -180 2 \
    2 1 600 2 \ -190 2 \
    3 1 590 2 \ -200 2 \
    4 1 590 2 \ -170 2 \
    5 1 600 1 \ -160 2 \
    6 1 590 1 \ -150 2 \
    7 1 580 2 \ -180 1 \
    8 1 580 1 \ -170 1 \
    9 1 600 1 \ -140 2 \
    10 1 580 2 \ -190 1 \
    下载: 导出CSV

    表  5  急加速与急减速高发时空(前10)

    Table  5.   Time of high incidence of rapid acceleration and deceleration(top 10)

    排名 急加速 急减速
    X/m 车道Y 时间T X/m 车道Y 时间T
    1 50 2 17:00 500 2 18:00
    2 1 430 2 18:00 490 2 18:00
    3 40 2 17:00 510 2 18:00
    4 1 390 2 18:00 1 360 2 18:00
    5 1 400 2 18:00 1 370 2 18:00
    6 1 440 2 18:00 1 380 2 18:00
    7 1 380 2 18:00 520 2 18:00
    8 1 410 2 18:00 -90 2 17:00
    9 1 420 2 18:00 1 340 2 18:00
    10 40 2 18:00 1 390 2 18:00
    下载: 导出CSV
  • [1] 马潇驰, 陆建. 风险驾驶行为对高速公路事故影响因素研究[C]. 2022世界交通运输大会, 武汉: 中国公路学会, 2022.

    MAX C, LU J. Study on the factors influencing risky driving behavior on highway accidents[C]. 2022 World Transport Congress, Wuhan, China: China Highway Society, 2022. (in Chinese)
    [2] 邱锋. 基于智能算法的高速公路隧道交通事故预测研究[D]. 西安: 长安大学, 2018.

    QIU F. Highway tunnel Traffic accident prediction research based on intelligent algorithm[D]. Xi'an: Chang'an University, 2018. (in Chinese)
    [3] 张璇, 唐进君, 黄合来, 等. 山区高速公路隧道路段与开放路段的事故影响因素分析[J]. 交通信息与安全, 2022, 40(3): 10-18. doi: 10.3963/j.jssn.1674-4861.2022.03.002

    ZHANG X, TANG J J, HUANG H L, et al. An analysis of influential factors of crashes at tunnels and open sections of mountainous freeways[J]. Journal of Transport Information and Safety, 2022, 40(3): 10-18. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.002
    [4] 徐进, 曾粤. 高速条件下隧道出入口行驶速度特性[J]. 交通运输工程学报, 2021, 21(4): 197-209.

    XU J, ZENG Y. Characteristics of driving speed at tunnel entrance and Exit at high speed[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 197-209. (in Chinese)
    [5] 王建伟, 付佳杨, 付鑫. 基于网络时空核密度的不良驾驶行为多发点识别研究[C]. 2022世界交通运输大会, 武汉: 中国公路学会, 2022.

    WANG JW, FU JY, FU X. Research on the identification of multiple points of risk driving behavior based on network spatio-temporal kernel density[C]. 2022 World Transport Congress, Wuhan, China: China Highway Society, 2022. (in Chinese)
    [6] YAN G, WANG M, QIN P, et al. Comparative study on drivers' eye movement characteristics and psycho-physiological reactions at tunnel entrances in plain and high-altitude areas: a pilot study[J]. Tunnelling and Underground Space Technology, 2022, 122: 104370. doi: 10.1016/j.tust.2022.104370
    [7] 白婧荣, 唐伯明, 孙宗元, 等. 毗邻互通立交特长隧道驾驶负荷研究[J]. 交通运输系统工程与信息, 2022, 22(1): 301-310.

    BAI J R, TANG B M, SUN Z Y, et al. On Driving Load of Super-long Tunnel Adjacent to Interchanges[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 301-310. (in Chinese)
    [8] 万利, 王虹婷, 张长安, 等. 高速公路隧道侧向宽度对大型车驾驶负荷的影响[J]. 公路交通科技, 2022, 39(9): 169-176.

    WAN L, WANG H T, ZHANG C A, et al. Influence of lateral width of expressway tunnel on driving load of large vehicle[J]. Journal of Highway and Transportation Research and Development, 2022, 39(9): 169-176. (in Chinese)
    [9] 阎莹, 王虹婷, 万利, 等. 基于因子分析与熵值法的不同隧道侧向宽度下驾驶负荷模型[J]. 中国公路学报, 2023, 36 (2): 190-202. doi: 10.3969/j.issn.1001-7372.2023.02.016

    YAN Y, WANG H T, WAN L, et al. Driver load model under different tunnel lateral widths based on factor analysis and entropy method[J]. China Journal of Highway and Transport, 2023, 36(2): 190-202. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.02.016
    [10] 唐皓, 唐忠泽, 张驰, 等. 隧道与主线出口间小净距路段车辆行驶特征分析[J]. 交通信息与安全, 2023, 41(4): 33-43. doi: 10.3963/j.jssn.1674-4861.2023.04.004

    TANG H, TANG Z Z, ZHANG C, et al. An analysis of driving behavior on short distance section between tunnel and the exit of main roadway[J]. Journal of Transport Information and Safety, 2023, 41(4): 33-43. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.004
    [11] 李永庆. 基于行为谱的隧道路段不良驾驶行为特性及识别研究[D]. 西安: 长安大学, 2022.

    LI Y Q. Research on characteristics and identification of risky driving behavior in tunnel section based on behavior spectrum[D]. Xi'an: Chang'an University, 2022. (in Chinese)
    [12] 王可, 陆键, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为谱构建与特征值计算方法[J]. 交通运输工程学报, 2020, 20(6): 236-249.

    WANG K, LU J, JANG Y M. Abnormal road driving behavior spectrum establishment and characteristic value calculation method based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 236-249. (in Chinese)
    [13] 刘唐志, 毕辉云, 杨卓思, 等. 基于操纵量指标的合流区危险驾驶行为谱研究[J]. 交通运输系统工程与信息, 2023, 23 (2): 242-251.

    LIU T Z, BI H Y, YANG Z S, et al. Dangerous Driving Behavior Spectrum in Merging Area Based on Maneuver Indicators[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 242-251. (in Chinese)
    [14] WANG J H, FU T, SHANGGUAN Q Q. Wide-area vehicle trajectory data based on advanced tracking and trajectory splicing technologies: potentials in transportation research[J]. Accident Analysis & Prevention, 2023, 186: 107044.
    [15] WANG J H, FU T, XUE J, et al. Realtime wide-area vehicle trajectory tracking using millimeter-wave radar sensors and the open TJRD TS dataset[J]. International Journal of Transportation Science and Technology, 2023, 12(1): 273-290. doi: 10.1016/j.ijtst.2022.02.006
    [16] 中华人民共和国交通部. 公路项目安全性评价指南: JTG/T B05-2015[S]. 北京: 人民交通出版社, 2015.

    Ministry of Transport of the People's Republic of China. Specifications for highway safety audit: JTG/T B05-2015[S]. Beijing: China Communications Press, 2015. (in Chinese)
    [17] 中华人民共和国交通部. 道路交通标志和标线第5部分: 限制速度: GB 5768. 5-2017[S]. 北京: 中国标准出版社, 2017.

    Ministry of Transport, People's Republic of China. Road traffic signs and markings-part 5: speed limit: GB 5768. 5-2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
    [18] 徐进, 杨奎, 罗骁, 等. 山区双车道公路运行速度预测模型的加速度标定[J]. 哈尔滨工业大学学报, 2017, 49(3): 181-188.

    XU J, YANG K, LUO X, et al. Calibrating of acceleration and deceleration rate for the operating speed prediction models of two-lane roads in a mountainous area[J]. Journal of Harbin Institute of Technology, 2017, 49(3): 181-188.
    [19] BRUNSDON C, CORCORAN J, HIGGS G. Visualising space and time in crime patterns: a comparison of methods[J]. Computers, Environment and Urban Systems, 2007, 31(1): 52-75. doi: 10.1016/j.compenvurbsys.2005.07.009
    [20] KRISTAN M, LEONARDIS A, SKOČAJ D. Multivariate online kernel density estimation with Gaussian kernels[J]. Pattern Recognition, 2011, 44(10-11): 2630-2642. doi: 10.1016/j.patcog.2011.03.019
    [21] HOHL A, DELMELLE E, TANG W, et al. Accelerating the discovery of space-time patterns of infectious diseases using parallel computing[J]. Spatial and Spatio-temporal Epidemiology, 2016, 19: 10-20. doi: 10.1016/j.sste.2016.05.002
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  25
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 网络出版日期:  2024-11-25

目录

    /

    返回文章
    返回