A Model of Associations Between Expressions of Driving Anger and Inducements for Extreme Commuting Group
-
摘要: 极端通勤群体(通勤时间超过60 min的人群)由于长时间、高压力的通勤环境易产生驾驶愤怒,从而影响交通安全。针对极端通勤群体的“路怒症”现象,研究了量化极端通勤群体驾驶愤怒表达与诱因关联关系的模型。通过编制适用于极端通勤群体的驾驶愤怒量表(driving anger scale for extreme commuting group,EC_DAS)和驾驶愤怒表达量表(driving anger expression inventory for extreme commuting group,EC_DAX)对450名往返燕郊与北京的极端通勤驾驶人进行问卷调查。基于调查数据,通过探索性因子分析、信度和效度检验对量表进行修订,构建了以无礼行为、交通障碍、缓慢驾驶、极端通勤和违法驾驶为外生潜变量,借助车辆发泄与口头攻击为内生潜变量的极端通勤群体驾驶愤怒表达与诱因关联模型,并运用结构方程模型量化了愤怒诱因对极端通勤群体驾驶愤怒表达行为的影响。结果表明:①EC_DAS中缓慢驾驶得分最高(3.37),其次为极端通勤(3.07),违法驾驶得分最低(2.95),EC_DAX中口头攻击得分(2.99)高于借助车辆发泄得分(2.90);②结构方程模型拟合良好,无礼行为、交通障碍、缓慢驾驶、极端通勤、违法驾驶等诱因对借助车辆发泄与口头攻击均有显著正向影响,其对口头攻击的解释方差(38%)比借助车辆发泄(37%)更高;③缓慢驾驶、极端通勤和交通障碍是借助车辆发泄最显著的3个诱因,其标准化影响效应系数分别为0.221,0.169,0.162;交通障碍、缓慢驾驶和无礼行为是口头攻击最显著的3个诱因,其标准化影响效应系数分别为0.215,0.189,0.148;④性别和月收入对不同诱因下的愤怒水平以及愤怒表达的影响不显著,年龄与无礼行为、交通障碍和违法驾驶下的愤怒水平呈显著负相关,驾龄与极端通勤下的愤怒水平、学历与缓慢驾驶下的愤怒水平以及职位与交通障碍下的愤怒水平也均呈显著负相关。Abstract: The extreme commuting population (individuals with commuting time exceeding 60 minutes) is susceptible to driving anger due to prolonged and high-stress commuting environments, which can adversely affect traffic safety. This study focuses on the phenomenon of "road rage" among extreme commuters and develops a model to quantify the associations between driving anger expressions and driving anger inducements within this group. The driving anger scale for extreme commuting group (EC_DAS) and the driving anger expression inventory for extreme commuting group (EC_DAX) are designed and surveyed to a cohort of 450 commuters traveling between Yanjiao and Beijing, China. Based on the survey data, scales are revised through exploratory factor analysis and tests of reliability and validity. Next, a model of association between expressions of driving anger and inducements for extreme commuting group is developed with discourtesy, traffic obstructions, slow driving, extreme commuting, and illegal driving as exogenous latent variables, and use of the vehicle to express anger and verbal aggression as endogenous latent variables. The impact of these anger triggers on the expression of driving anger in the extreme commuting group is quantified using a structural equation model. The results are as follows: ①In the EC_DAS, the highest score is observed for slow driving (3.37), followed by extreme commuting (3.07), with illegal driving receiving the lowest score (2.95). In the EC_DAX, verbal aggression scored higher (2.99) than the use of the vehicle to express anger (2.90). ②The structural equation model exhibits a strong goodness of fit, whose results show that use of the vehicle to express anger and verbal aggression are significantly and positively influenced by driving anger inducements including discourtesy, traffic obstructions, slow driving, extreme commuting, and illegal driving. Moreover, it is noted that these factors explain a higher variance in verbal aggression (38%) than in use of the vehicle to express anger (37%). ③Additionally, slow driving, extreme commuting, and traffic obstructions emerge as the three most significant inducements of use of the vehicle to express anger, with standardized effect coefficient of 0.221, 0.169 and 0.162, respectively, while traffic obstructions, slow driving, and discourtesy are identified as the three most significant inducements of verbal aggressive, with standardized effect efficient of 0.215, 0.189, and 0.148, respectively. ④Gender and monthly income do not have significant impacts on anger levels under different driving inducements or anger expression. However, age is significantly negative-correlated with anger levels induced by discourtesy, traffic obstructions, and illegal driving. Driving experience is significantly negative-correlated with anger levels induced by extreme commuting, education level is significantly negative-correlated with anger levels induced by slow driving, and job position is significantly negative-correlated with anger levels induced by traffic obstructions.
-
表 1 模型变量描述
Table 1. The description of model variables
量表 潜变量 变量符号 测量变量 题项来源 S1 有车辆紧随其后,贴近您车辆后保险杠行驶 Deffenbacher[4] S2 有人驾驶汽车在车流中不断穿插变道 Deffenbacher[4] S3 在高速公路上,有车突然从旁边切入到您前方 Feng[7] S4 有车突然切入,抢占了您正在等候的停车位 Feng[7] 无礼行为 S5 有人在您面前倒车,但他(她)没有回头查看 Feng[7] S6 夜间驾驶时,迎面车辆未将远光灯切换为近光灯 Deffenbacher[4] S7 夜间驾驶时,您后方的车辆使用远光灯 Deffenbacher[4] S8 当您正要超车时,前车突然加速 Feng[7] S9 在候车时,旁边的车辆突然加塞到您前方 Deffenbacher[4] S10 有人在机动车道上骑行自行车,导致车流速度减慢 Deffenbacher[4] S11 您跟在1辆卡车后面,其尾部有物品在摆动 Deffenbacher[4] S12 您开车时意外驶入1个未标记的深坑 Feng[7] S13 您跟在一辆排放浓烟的车辆后面 Feng[7] 交通障碍 S14 您遇到了交通堵塞 Feng[7] S15 行进的卡车扬起的沙土或石子撒落到了您车上 Deffenbacher[4] EC_DAS S16 您跟在1辆卡车后,无法看清周边的路况 Feng[7] S17 您行驶时遇到“道路施工,请绕道”的标志 Deffenbacher[4] S18 绿灯亮时,前方车辆未及时启动 Feng[7] S19 行人横穿马路时行走缓慢,迫使您减速 Feng[7] 缓慢驾驶 S20 有车辆在超车道上行驶速度过慢,造成交通拥堵 Feng[7] S21 前方行驶车辆的速度远低于当前路段的合理速度 Deffenbacher[4] S22 有人停车过慢,阻碍了主线交通 Deffenbacher[4] S23 检查站突然严格检查,导致通行缓慢并形成交通拥堵 新增 S24 上班即将迟到(不考虑路况) 新增 极端通勤 S25 由于限行,必须选择绕很远的路 新增 S26 到了限行时间段,仍没有走出限行路段 新增 S27 上、下班路上突然接到工作电话 新增 S28 雨天路过易积水路段时,由于积水过多导致通行缓慢 新增 S29 有人在道路条件不适宜的情况下开得太快 Deffenbacher[4] 违法驾驶 S30 有人闯红灯或停车标志 Feng[7] S31 有人正在超速行驶 Feng[7] S32 有人在交通中频繁穿梭 Deffenbacher[4] X1 您会猛踩油门或驾驶得更快 Deffenbacher[5] 借助车辆发泄 X2 您会紧跟前车行驶 Deffenbacher[5] X3 您会频繁尝试超车 新增 EC_DAX X4 您会强行变道或插队 新增 X5 您会对其他驾驶人大声喊叫 Deffenbacher[5] 口头攻击 X6 您会对其他驾驶人摇头表示不满 Deffenbacher[5] X7 您会用鄙视的眼神看着其他驾驶人 Deffenbacher[5] X8 您会低声对其他驾驶人发表负面评论 新增 表 2 被试样本人口统计学特征统计
Table 2. Statistical summary of demographic characteristics of the sample population
样本属性 组别 频率 百分比/% > 20~25 10 2.33 > 25~30 110 25.64 年龄/岁 > 30~35 204 47.55 > 35~40 81 18.88 > 40 24 5.59 性别 男 289 67.37 女 140 32.63 ≤5 94 21.91 驾龄/年 > 5~10 160 37.30 > 10~15 97 22.6 > 15 78 18.18 硕士、博士 68 15.85 学历 本科、专科 361 84.15 高中、初中、小学 0 0.00 基层职员 322 75.06 职位 基层管理 80 18.65 中层管理 27 6.29 高层管理 0 0.00 ≤5 000 16 3.73 > 5 000~10 000 23 5.36 月收入/元 > 10 000~15 000 53 12.35 > 15 000~20 000 139 32.40 > 20 000 198 46.15 表 3 EC_DAS和EC_DAX因子载荷量及其贡献率
Table 3. Factor loading and contribution rates of EC_DAS and EC_DAX
量表 变量 方差贡献率/% 题项(载荷量) 无礼行为 17.09 S1(0.778) S3(0.745) S4(0.756) S5(0.760) S6(0.712) S7(0.738) S9(0.743) S10(0.744) 交通障碍 13.38 S11(0.735) S12(0.767) S13(0.769) S14(0.765) S15(0.744) S16(0.728) EC_DAS 缓慢驾驶 12.85 S18(0.766) S19(0.699) S20(0.805) S21(0.802) S22(0.714) 极端通勤 11.18 S23(0.761) S24(0.713) S25(0.778) S26(0.773) S27(0.740) S28(0.703) 违法驾驶 9.42 S29(0.738) S30(0.745) S31(0.802) S32(0.81) EC_DAX 借助车辆发泄 37.97 X1(0.861) X2(0.815) X3(0.832) X4(0.919) 口头攻击 37.30 X5(0.829) X6(0.851) X7(0.845) X8(0.872) 表 4 EC_DAS与EC_DAX信度检验结果
Table 4. Reliability test results for EC_DAS and EC_DAX
量表 变量 克隆巴赫系数 项数 无礼行为 0.909 8 交通障碍 0.891 6 EC_DAS 缓慢驾驶 0.869 5 极端通勤 0.874 6 违法驾驶 0.820 4 总量表 0.924 29 借助车辆发泄 0.894 4 EC_DAX 口头攻击 0.886 4 总量表 0.861 8 表 5 EC_DAS和EC_DAX效度检验结果
Table 5. Validity test results for EC_DAS and EC_DAX
变量 AVE CR 无礼行为 交通障碍 缓慢驾驶 极端通勤 违法驾驶 无礼行为 0.557 0.910 0.747 交通障碍 0.579 0.892 0.458** 0.761 EC_DAS 缓慢驾驶 0.572 0.870 0.392** 0.453** 0.756 极端通勤 0.537 0.874 0.363** 0.380** 0.401** 0.733 违法驾驶 0.536 0.821 0.276** 0.340** 0.245** 0.336** 0.732 EC_DAX 借助车辆发泄 0.686 0.897 0.828 口头攻击 0.661 0.886 0.348** 0.813 注:表格对角线加粗数字为对应维度AVE值平方根;非对角线数字为维度间相关系数;“**”为p < 0.01。 表 6 驾驶愤怒与愤怒表达均分和标准差
Table 6. Mean and standard deviation of driving anger and anger expression
维度 无礼行为 交通障碍 缓慢驾驶 极端通勤 违法驾驶 借助车辆发泄 口头攻击 M 3.06 3.02 3.37 3.07 2.95 2.90 2.99 SD 0.80 0.69 0.87 0.82 0.83 0.84 0.88 表 7 模型检验结果
Table 7. Model test results
适配度指标 CMIN/DF RMSEA IFI TLI CFI 适配标准 1~3 < 0.08 > 0.9 > 0.9 > 0.9 模型结果 1.261 0.025 0.981 0.980 0.981 拟合评判 良好 良好 良好 良好 良好 表 8 模型标准化路径系数回归结果
Table 8. Standardized path coefficient regression results of the model
假设研究 路径关系 标准化系数 标准误差 临界比率值 P值 假设结论 H1 借助车辆发泄 ← 无礼行为 0.121 0.062 2.279 * 支持 H2 借助车辆发泄 ← 交通障碍 0.162 0.07 2.733 ** 支持 H3 借助车辆发泄 ← 缓慢驾驶 0.221 0.06 3.502 *** 支持 H4 借助车辆发泄 ← 极端通勤 0.169 0.067 3.083 ** 支持 H5 借助车辆发泄 ← 违法驾驶 0.154 0.053 2.494 ** 支持 H6 口头攻击 ← 无礼行为 0.148 0.067 2.748 ** 支持 H7 口头攻击 ← 交通障碍 0.215 0.077 3.589 *** 支持 H8 口头攻击 ← 缓慢驾驶 0.189 0.064 2.665 * 支持 H9 口头攻击 ← 极端通勤 0.146 0.073 2.717 ** 支持 H10 口头攻击 ← 违法驾驶 0.142 0.058 2.326 ** 支持 注:“*”为p < 0.05;“**”为p < 0.01;“***”为p < 0.001。 表 9 人口统计学特征与不同诱因下的愤怒水平和表达得分的相关性
Table 9. The correlation between demographic factors and anger levels and expression scores under different inducements
变量 年龄 性别 驾龄 学历 职位 月收入 无礼行为 -0.088* 0.012 -0.041 -0.072 -0.071 -0.031 交通障碍 -0.101* -0.017 -0.048 -0.093 -0.084* -0.04 缓慢驾驶 -0.009 0.066 0.066 -0.095* 0.007 -0.045 极端通勤 -0.006 0.001 -0.080* -0.065 -0.025 0.01 违法驾驶 -0.083* 0.043 -0.01 -0.037 0.039 0.005 借助车辆发泄 -0.013 -0.013 0.015 -0.002 0.033 -0.035 口头攻击 0.036 0.03 0.007 -0.072 -0.017 -0.011 -
[1] 黄欣然. 国土空间规划统领下的城市通勤优化路径探讨—基于《中国主要城市通勤监测报告》[J]. 城市建筑, 2024, 21 (10): 103-106, 131.HUANG X R. Discussion on the optimization path of urban commuting under the guidance of territorial spatial planning: based on the commuting monitoring report of major cities in China[J]. Urbanism and Architecture, 2024, 21(10): 103-106, 131. (in Chinese) [2] 万平, 吴超仲, 林英姿, 等. 基于置信规则库的驾驶人愤怒情绪识别模型[J]. 交通运输系统工程与信息, 2015, 15(5): 96-102.WAN P, WU C Z, LIN Y Z, et al. A recognition model of driving anger based on belief rule base[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 96-102. (in Chinese) [3] 邓院昌, 金杰灵. 关于驾驶员"路怒症"的研究综述[J]. 重庆交通大学学报(自然科学版), 2018, 37(11): 105-111.DENG Y C, JIN J L. Review on driver's road rage[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37 (11): 105-111. (in Chinese) [4] DEFFENBACHER J L, OETTING E R, LYNCH R S. Development of a driving anger scale[J]. Psychological Reports, 1994, 74(1): 83-91. doi: 10.2466/pr0.1994.74.1.83 [5] DEFFENBACHER J L, LYNCH R S, OETTING E R, et al. The driving anger expression inventory: a measure of how people express their anger on the road[J]. Behaviour Research and Therapy, 2002, 40(6): 717-737. doi: 10.1016/S0005-7967(01)00063-8 [6] 李琼, 汪勇杰, 陈文强, 等. 公交驾驶员组织认同感对驾驶愤怒的影响: 职业倦怠的中介作用[J]. 中国安全科学学报, 2022, 32(5): 8-13.LI Q, WANG Y J, CHEN W Q, et al. Impact of bus drivers'organizational identity on driving anger: mediating role of burnout[J]. China Safety Science Journal, 2022, 32(5): 8-13. (in Chinese) [7] FENG Z X, LEI Y W, LIU H C, et al. Driving anger in China: a case study on professional drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 42 (2): 255-266. [8] 李圳. 驾驶愤怒现状及其对道路交通安全影响的研究[D]. 南京: 东南大学, 2018.LI Z. A study on epidemic status and influencing factors of driving anger and road traffic injuries[J]. Nanjing: Southeast University, 2018. (in Chinese) [9] 雷虎. 愤怒情绪下的汽车驾驶行为特征及其对交通安全的影响研究[D]. 武汉: 武汉理工大学, 2011.LEI H. The characteristics of angry driving behaviors and its effects on traffic safety[D]. Wuhan: Wuhan University of Technology, 2011. (in Chinese) [10] SULLMAN M J M, STEPHENS A N, YONG M. Anger, aggression and road rage behaviour in Malaysian drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 29: 70-82. [11] HERRERO-FERNÁNDEZ D. Psychometric adaptation of the driving anger expression inventory in a Spanish sample: differences by age and gender[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2011, 14(4): 324-329. [12] 刘洋, 陈红, 肖赟, 等. 货运驾驶员路怒情绪对愤怒表达行为的影响研究[J]. 交通运输工程与信息学报, 2023, 21 (3): 130-144.LIU Y, CHEN H, XIAO Y, et al. Influence of road rage on anger expression among freight drivers[J]. Journal of Transportation Engineering and Information, 2023, 21(3): 130-144. (in Chinese) [13] STANOJEVIĆ P, SULLMAN M J M, JOVANOVIĆ D, et al. The impact of police presence on angry and aggressive driving[J]. Accident Analysis & Prevention, 2018, 110: 93-100. [14] ZHANG T, CHAN A H S, ZHANG W. Dimensions of driving anger and their relationships with aberrant driving[J]. Accident Analysis & Prevention, 2015, 81: 124-133. [15] LI Z M, MAN S S, CHAN A H S, et al. Driving anger scale validation: relationship of driving anger with the aberrant driving behaviour of truck drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81 (3): 364-372. [16] GE Y, QU W, ZHANG Q, et al. Psychometric adaptation of the driving anger expression inventory in a Chinese sample[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 33(2): 75-86. [17] 李佳硕, 郑展骥, 顾欣, 等. 考虑快速路交织区驾驶人强行变道行为的交通冲突机理分析[J]. 交通信息与安全, 2023, 41(3): 1-11. doi: 10.3963/j.jssn.1674-4861.2023.03.001LI J S, ZHENG Z J, GU X, et al. An analysis of the mechanism of traffic conflicts considering risky lane-changing behavior in weaving sections of expressways[J]. Journal of Transport Information and Safety, 2023, 41(3): 1-11. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.001 [18] 袁野, 萧文龙, 于媛, 等. 结构方程模型的应用准则: CB-SEM和PLS-SEM研究范式的比较与启示[J]. 信息资源管理学报, 2023, 13(3): 6-22.YUAN Y, XIAO W L, YU Y, et al. Criteria of Structural Equation Modeling: comparisons and enlightenments of CB-SEM and PLS-SEM[J]. Journal of Information Resources Management, 2023, 13(3): 6-22. (in Chinese) [19] HASSAN Z. Impact of social, epistemic and conditional values on customer satisfaction and loyalty in automobile industry: a structural equation modelling[J]. Journal of Marketing and Consumer Behaviour in Emerging Markets, 2017, 5(1): 29-44. [20] MOHAMMED Z C, NGENO V, LAGAT C. Environmentally sustainable supply chain practices, organisation culture on firm performance: a mediation approach[J]. International Journal of Emerging Trends in Social Sciences, 2019, 6(2): 34-45.